Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016025

RESUMO

The exploitation of hierarchical carbon nanocages with superior light-to-heat conversion efficiency, together with their distinct structural, morphological, and electronic properties, in photothermal applications could provide effective solutions to long-standing challenges in diverse areas. Here, we demonstrate the discovery of pristine and nitrogen-doped hierarchical carbon nanocages as superior supports for highly loaded, small-sized Ru particles toward enhanced photothermal CO2 catalysis. A record CO production rate of 3.1 mol·gRu-1·h-1 with above 90% selectivity in flow reactors was reached for hierarchical nitrogen-doped carbon-nanocage-supported Ru clusters under 2.4 W·cm-2 illumination without external heating. Detailed studies reveal that the enhanced performance originates from the strong broadband sunlight absorption and efficient light-to-heat conversion of nanocage supports as well as the excellent intrinsic catalytic reactivity of sub-2 nm Ru particles. Our study reveals the great potential of hierarchical carbon nanocages in photothermal catalysis to reduce the fossil fuel consumption of various industrial chemical processes and stimulates interest in their exploitation for other demanding photothermal applications.

2.
Int J Biol Macromol ; 272(Pt 2): 132862, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838880

RESUMO

In this study, starch nanoparticles (SNPs) were prepared by alternate treatments of liquid nitrogen ball milling and ultrasonication. The impact, shear and friction forces produced by ball milling, and acoustic cavitation and shear effects generated by ultrasonication disrupted starch granules to prepare SNPs. The SNPs possessed narrow particle size distribution (46.91-210.52 nm) and low polydispersity index (0.28-0.45). Additionally, the SNPs exhibited the irregular fragments with good uniformity. The relative crystallinity decreased from 34.91 % (waxy corn starch, WCS) to 0-25.91 % (SNPs), and the absorbance ratios of R1047/1022 decreased from 0.81 (WCS) to 0.60-0.76 (SNPs). The SNPs had lower thermal stability than that of WCS, characterized by a decrease in Td (temperature at maximum weight loss) from 309.39 °C (WCS) to 300.39-305.75 °C (SNPs). Furthermore, the SNPs exhibited excellent swelling power (3.48-28.02 %) and solubility (0.34-0.97 g/g). Notably, oil absorption capacity of the SNPs (9.77-15.67 g/g) was rather greater than that of WCS (1.33 g/g). Furthermore, the SNPs possessed the lower storage modulus (G'), loss modulus (G″) and viscosity than that of WCS. The SNPs with predictable size and high dispersion capability prepared in this study lay a foundation for expanding the application of SNPs.


Assuntos
Nanopartículas , Tamanho da Partícula , Amido , Amido/química , Nanopartículas/química , Sonicação , Solubilidade , Temperatura , Zea mays/química , Zea mays/genética
3.
ACS Appl Mater Interfaces ; 16(27): 35639-35650, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38916253

RESUMO

Photonic crystal coatings with unique structural colors and self-cleaning properties have been providing an efficient way for substrate coloration. However, the enhancement of the robustness and durability of structural colored coatings to meet the requirements in diverse environments remains a challenging task. Here, to realize the application of photonic crystal films under various kinds of conditions, we present a poly(fluoroalkyl acrylate)-based colloidal photonic crystal (fCPC) coating. Fluorinated core-interlayer-shell (FCIS) colloidal particles of polystyrene (PS) core, poly(methyl methacrylate) (PMMA) interlayer, and poly(fluoroalkyl acrylate-ethyl acrylate-butyl acrylate) (P(FA-EA-BA)) shell copolymers have been first prepared by a stepwise emulsion polymerization. fCPCs with self-supporting property, reprocessing ability, friction resistance, as well as excellent wettability and liquid-repellent properties are successfully obtained via the bending-induced ordering technique (BIOT). When applied in antifouling applications, the fCPC film exhibits resistance against various oil and inorganic liquids. Furthermore, the fCPC coatings demonstrate their durability under outdoor conditions by maintaining stable color appearances during rainy and sunny conditions. Additionally, an electronic product adhered with the fCPC coatings is presented, which exhibits a surface that remains clean even after prolonged usage in comparison to the conventional CPC coating. Structural colored textiles with enhanced stability and functionalized liquid-repellent properties are achieved through a one-step process using FCIS particles. Therefore, the developed self-cleaning and comprehensive fCPC coatings capable of withstanding diverse conditions may open up new avenues for the advancement of structural coloration in decoration, vehicle, textile, and building.

4.
Heliyon ; 10(3): e24974, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38314301

RESUMO

Background: Rising evidence indicates the development of pyroptosis in the initiation and pathogenesis of spinal cord injury (SCI). However, the associated effects of pyroptosis-related genes (PRGs) in SCI are unclear. Methods: We obtained the gene expression profiles of SCI and normal samples in the GEO. Database: The R package limma screened for differentially expressed (DE) PRGs and performed functional enrichment analysis. Mechanical learning and PPI analysis helped filter essential PRGs to diagnose SCI. Peripheral blood was collected for validation from ten SCI patients and eight healthy individuals. The association of essential PRGs with immune infiltration was evaluated, and pyroptosis subtypes were recognized in SCI patients by unsupervised cluster analysis. Besides, a SCI model was built for in vivo validation of essential PRGs. Result: We identified 25 DE-PRGs between SCI and normal controls. Functional enrichment analysis revealed the principal involvement of DE-PRGs in pyroptosis, inflammasome complex, interleukin-1 beta production, etc. Subsequently, three essential PRGs were identified and validated, showing excellent diagnostic efficacy and significant correlation with immune cell infiltration. Additionally, we developed diagnostic nomograms to predict the occurrence of SCI. Two pyroptosis subtypes exhibited distinct biological functions and immune landscapes among SCI patients. Finally, the expression of these essential PRGswas verified in vivo. Conclusion: The current study described the vital effects of pyroptosis-related genes in SCI, providing a novel direction for effective assessment and management of SCI.

5.
Mol Neurobiol ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363534

RESUMO

Spinal cord injury (SCI) is a catastrophic accidence with little effective treatment, and inflammation played an important role in that. Previous studies showed photobiomodulation (PBM) could effectively downregulate the process of inflammation with modification of macrophage polarization after SCI; however, the potential mechanism behind that is still unclear. In the presented study, we aimed to investigate the effect of PBM on the expression level of versican, a matrix molecular believed to be associated with inflammation, and tried to find the mechanism on how that could regulate the inflammation process. Using immunofluorescence technique and western blot, we found the expression level of versican is increased after injury and markedly downregulated by irradiation treatment. Using virus intrathecal injection, we found the knock-down of versican could produce the effect similar to that of PBM and might have an effect on inflammation and macrophage polarization after SCI. To further verify the deduction, we peptide the supernatant of astrocytes to induce M0, M1, and M2 macrophages. We found that the versican produced by astrocytes might have a role on the promotion of M2 macrophages to inflammatory polarization. Finally, we investigated the potential pathway in the regulation of M2 polarization with the induction of versican. This study tried to give an interpretation on the mechanism of inflammation inhibition for PBM in the perspective of matrix regulation. Our results might provide light on the inflammation regulation after SCI.

6.
Int J Biol Macromol ; 259(Pt 1): 129247, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199530

RESUMO

The molecular motion of starch at different glycerol concentrations (0, 20, 50, and 80 %) was investigated using Electron Paramagnetic Resonance (EPR) spectroscopy. Fourier-transform infrared (FTIR) spectroscopy and 1H nuclear magnetic resonance (1H NMR) spectroscopy confirmed that hydroxyl groups at the C2 and C3 positions of glucose units in corn starch (CS), waxy corn starch (WCS), and high amylose corn starch (HCS) were labeled with 4-amino-TEMPO. The crystallinities of CS, WCS, and HCS after spin-labeling decreased from 30.68 % to 3.21 %, 39.36 % to 1.65 %, and 28.54 % to 8.08 %, respectively. The pseudoplastic fluid properties of the spin-labeled starch remained shear-thin at different glycerol concentrations. EPR revealed the fast- and slow-motion components of the spin-labeled starch molecules dispersed in water. At a glycerol concentration of 20 %, the slow-motion component disappeared, indicating a faster rotational motion of the starch chain segments. As the glycerol concentration increased to 50 and 80 %, the rotational motion slowed because of high viscosity. In particular, the mobility of the spin-labeled WCS chains increased owing to easier access of glycerol and water to the branched structure. This study directly observed the dynamics of the molecular behavior of starch in glycerol-water systems.


Assuntos
Glicerol , Amido , Amido/química , Água , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Amilose/química , Marcadores de Spin , Amilopectina
7.
Adv Mater ; 36(9): e2308859, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37931240

RESUMO

Improving the solar-to-thermal energy conversion efficiency of photothermal nanomaterials at no expense of other physicochemical properties, e.g., the catalytic reactivity of metal nanoparticles, is highly desired for diverse applications but remains a big challenge. Herein, a synergistic strategy is developed for enhanced photothermal conversion by a greenhouse-like plasmonic superstructure of 4 nm cobalt nanoparticles while maintaining their intrinsic catalytic reactivity. The silica shell plays a key role in retaining the plasmonic superstructures for efficient use of the full solar spectrum, and reducing the heat loss of cobalt nanoparticles via the nano-greenhouse effect. The optimized plasmonic superstructure catalyst exhibits supra-photothermal CO2 methanation performance with a record-high rate of 2.3 mol gCo -1 h-1 , close to 100% CH4 selectivity, and desirable catalytic stability. This work reveals the great potential of nanoscale greenhouse effect in enhancing photothermal conversions through the combination with conventional promoting strategies, shedding light on the design of efficient photothermal nanomaterials for demanding applications.

8.
Int J Biol Macromol ; 255: 128213, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37989032

RESUMO

The effects of soy protein isolate hydrolysate (SPIH) on the physicochemical properties and digestive characteristics of three starch types (wheat, potato, and pea) were investigated. Fourier-transform infrared spectroscopy and molecular dynamics simulations showed that hydrogen bonds were the driving force of the interaction between SPIH and starch. Furthermore, the SPIH was predicted to preferentially bind to the terminal region of starch using molecular dynamics simulations. Compared to pure starch, adding 20 % SPIH to wheat starch, potato starch, and pea starch, the content of resistant starch increased by 39.71 %, 125.66 % and 37.83 %, respectively. Both the radial distribution function (RDF) and low field-nuclear magnetic resonance (LF-NMR) showed that SPIH reduced the flow of water molecules in starch, indicating that SPIH competed with starch for water molecules. Multiple characterization experiments and molecular dynamics simulations confirmed that the anti-digestibility mechanism of SPIH on natural starches with different crystal types could be attributed to the interaction between starch and SPIH, which decreased the catalytic efficiency of amylase. This study clarified the anti-digestibility mechanism of SPIH on natural starches, which provides new insights into the production of low-glycemic index foods for the diabetic population.


Assuntos
Proteínas de Soja , Amido , Amido/química , Amilases , Amido Resistente , Água
9.
Adv Sci (Weinh) ; 10(32): e2304487, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37789583

RESUMO

Addressing the challenge of promoting directional axonal regeneration in a hostile astrocytic scar, which often impedes recovery following spinal cord injury (SCI), remains a daunting task. Cell transplantation is a promising strategy to facilitate nerve restoration in SCI. In this research, a pro-regeneration system is developed, namely miR-26a@SPIONs-OECs, for olfactory ensheathing cells (OECs), a preferred choice for promoting nerve regeneration in SCI patients. These entities show high responsiveness to external magnetic fields (MF), leading to synergistic multimodal cues to enhance nerve regeneration. First, an MF stimulates miR-26a@SPIONs-OECs to release extracellular vesicles (EVs) rich in miR-26a. This encourages axon growth by inhibiting PTEN and GSK-3ß signaling pathways in neurons. Second, miR-26a@SPIONs-OECs exhibit a tendency to migrate and orientate along the direction of the MF, thereby potentially facilitating neuronal reconnection through directional neurite elongation. Third, miR-26a-enriched EVs from miR-26a@SPIONs-OECs can interact with host astrocytes, thereby diminishing inhibitory cues for neurite growth. In a rat model of SCI, the miR-26a@SPIONs-OECs system led to significantly improved morphological and motor function recovery. In summary, the miR-26a@SPIONS-OECs pro-regeneration system offers innovative insights into engineering exogenous cells with multiple additional cues, augmenting their efficacy for stimulating and guiding nerve regeneration within a hostile astrocytic scar in SCI.


Assuntos
MicroRNAs , Traumatismos da Medula Espinal , Ratos , Humanos , Animais , Astrócitos/metabolismo , Cicatriz/patologia , Orientação de Axônios , Glicogênio Sintase Quinase 3 beta/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Fenômenos Magnéticos , MicroRNAs/genética , MicroRNAs/metabolismo
10.
Int J Biol Macromol ; 249: 126141, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37544562

RESUMO

This study investigated the effects of pullulanase debranching on the structural properties and digestibility of maize starch (MS)-glyceryl monostearate (GMS) complexes. According to our results, the apparent amylose content of MS increased from 36.34 % to 95.55 % and complex index reached 93.09 % after 16 h of pullulanase debranching. The crystallinity of prepared MS-GMS complexes increased to 33.24 % with a blend of B-type and V-type crystals. The surface of prepared MS-GMS complexes granules emerged more small lamellar crystals tightly adhering to the surface of granules. The Fourier transforms infrared spectroscopy analysis showed that debranching pretreatment MS-GMS complexes exhibited higher levels of short-range orders structure. These results indicated that maize starch was favorable to form more ordered starch-lipid complexes structure after debranching pretreatment, which resulted in the restriction of starch hydrolysis. In vitro digestion data implied that resistant starch (RS) content increased with the extension of the debranching time, and the highest RS content (69.58 %) appeared with 16 h pullulanase debranching. This work suggests that debranching pretreatment could be an efficient way to produce ordered starch-lipid complexes with controllable structure and anti-digestibility.


Assuntos
Amido , Zea mays , Zea mays/química , Amido/química , Amilose/química , Hidrólise , Amido Resistente , Glicerídeos , Digestão
11.
ACS Omega ; 8(32): 29725-29734, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37599984

RESUMO

The bursting liability of coal, referring to the characteristic of coal to accumulate strain energy and produce impact damage, is an important factor influencing the occurrence and extent of rock burst disasters in coal mines. Two indicators-the elastic strain energy storage coefficient and energy release coefficient-are proposed based on the energy evolution characteristics of different stages during rock bursts. Twelve coal specimens from typical mines were selected for uniaxial compressive tests to analyze the damage characteristics of three types of typical coal specimens with different impact damage intensities in different loading stages. The initial kinetic energy of the coal specimens was obtained according to the principle of horizontal projectile motion. The bursting liability rating criteria according to the energy storage coefficient and energy release coefficient were determined based on the damage and motion characteristics of the coal mass, damage acoustic characteristics, and damage initial kinetic energy. The study demonstrated that the discrimination results based on the new criteria of coal mass bursting liability were consistent with the actual bursting liability level of the coal mass, thus providing a new method for determining coal mass bursting liability.

12.
CNS Neurosci Ther ; 29(12): 3995-4017, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37475184

RESUMO

BACKGROUND: Many studies have recently highlighted the role of photobiomodulation (PBM) in neuropathic pain (NP) relief after spinal cord injury (SCI), suggesting that it may be an effective way to relieve NP after SCI. However, the underlying mechanisms remain unclear. This study aimed to determine the potential mechanisms of PBM in NP relief after SCI. METHODS: We performed systematic observations and investigated the mechanism of PBM intervention in NP in rats after SCI. Using transcriptome sequencing, we screened CXCL10 as a possible target molecule for PBM intervention and validated the results in rat tissues using reverse transcription-polymerase chain reaction and western blotting. Using immunofluorescence co-labeling, astrocytes and microglia were identified as the cells responsible for CXCL10 expression. The involvement of the NF-κB pathway in CXCL10 expression was verified using inhibitor pyrrolidine dithiocarbamate (PDTC) and agonist phorbol-12-myristate-13-acetate (PMA), which were further validated by an in vivo injection experiment. RESULTS: Here, we demonstrated that PBM therapy led to an improvement in NP relative behaviors post-SCI, inhibited the activation of microglia and astrocytes, and decreased the expression level of CXCL10 in glial cells, which was accompanied by mediation of the NF-κB signaling pathway. Photobiomodulation inhibit the activation of the NF-κB pathway and reduce downstream CXCL10 expression. The NF-κB pathway inhibitor PDTC had the same effect as PBM on improving pain in animals with SCI, and the NF-κB pathway promoter PMA could reverse the beneficial effect of PBM. CONCLUSIONS: Our results provide new insights into the mechanisms by which PBM alleviates NP after SCI. We demonstrated that PBM significantly inhibited the activation of microglia and astrocytes and decreased the expression level of CXCL10. These effects appear to be related to the NF-κB signaling pathway. Taken together, our study provides evidence that PBM could be a potentially effective therapy for NP after SCI, CXCL10 and NF-kB signaling pathways might be critical factors in pain relief mediated by PBM after SCI.


Assuntos
Neuralgia , Traumatismos da Medula Espinal , Animais , Ratos , Neuralgia/etiologia , Neuralgia/radioterapia , NF-kappa B/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/metabolismo , Tiocarbamatos/metabolismo
13.
Adv Sci (Weinh) ; 10(24): e2302568, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37338243

RESUMO

Sunlight-driven photocatalytic CO2 reduction provides intriguing opportunities for addressing the energy and environmental crises faced by humans. The rational combination of plasmonic antennas and active transition metal-based catalysts, known as "antenna-reactor" (AR) nanostructures, allows the simultaneous optimization of optical and catalytic performances of photocatalysts, and thus holds great promise for CO2 photocatalysis. Such design combines the favorable absorption, radiative, and photochemical properties of the plasmonic components with the great catalytic potentials and conductivities of the reactor components. In this review, recent developments of photocatalysts based on plasmonic AR systems for various gas-phase CO2 reduction reactions with emphasis on the electronic structure of plasmonic and catalytic metals, plasmon-driven catalytic pathways, and the role of AR complex in photocatalytic processes are summarized. Perspectives in terms of challenges and future research in this area are also highlighted.

14.
J Bone Oncol ; 40: 100484, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37234254

RESUMO

Osteosarcoma (OS) is a highly heterogeneous malignant bone tumor, and its tendency to metastasize leads to a poor prognosis. TGFß is an important regulator in the tumor microenvironment and is closely associated with the progression of various types of cancer. However, the role of TGFß-related genes in OS is still unclear. In this study, we identified 82 TGFß DEGs based on RNA-seq data from the TARGET and GETx databases and classified OS patients into two TGFß subtypes. The KM curve showed that the Cluster 2 patients had a substantially poorer prognosis than the Cluster 1 patients. Subsequently, a novel TGFß prognostic signatures (MYC and BMP8B) were developed based on the results of univariate, LASSO, and multifactorial Cox analyses. These signatures showed robust and reliable predictive performance for the prognosis of OS in the training and validation cohorts. To predict the three-year and five-year survival rate of OS, a nomogram that integrated clinical features and risk scores was also developed. The GSEA analysis showed that the different subgroups analyzed had distinct functions, particularly, the low-risk group was associated with high immune activity and a high infiltration abundance of CD8 T cells. Moreover, our results indicated that low-risk cases had higher sensitivity to immunotherapy, while high-risk cases were more sensitive to sorafenib and axitinib. scRNA-Seq analysis further revealed that MYC and BMP8B were strongly expressed mainly in tumor stromal cells. Finally, in this study, we confirmed the expression of MYC and BMP8B by performing qPCR, WB, and IHC analyses. To conclude, we developed and validated a TGFß-related signature to accurately predict the prognosis of OS. Our findings might contribute to personalized treatment and making better clinical decisions for OS patients.

15.
Bioeng Transl Med ; 8(3): e10473, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206245

RESUMO

Mitochondrial transplantation is a promising treatment for spinal cord injury (SCI), but it has the disadvantage of low efficiency of mitochondrial transfer to targeted cells. Here, we demonstrated that Photobiomodulation (PBM) could promote the transfer process, thus augmenting the therapeutic effect of mitochondrial transplantation. In vivo experiments, motor function recovery, tissue repair, and neuronal apoptosis were evaluated in different treatment groups. Under the premise of mitochondrial transplantation, the expression of Connex36 (Cx36), the trend of mitochondria transferred to neurons, and its downstream effects, such as ATP production and antioxidant capacity, were evaluated after PBM intervention. In in vitro experiments, dorsal root ganglia (DRG) were cotreated with PBM and 18ß-GA (a Cx36 inhibitor). In vivo experiments showed that PBM combined with mitochondrial transplantation could increase ATP production and reduce oxidative stress and neuronal apoptosis levels, thereby promoting tissue repair and motor function recovery. In vitro experiments further verified that Cx36 mediated the transfer of mitochondria into neurons. PBM could facilitate this progress via Cx36 both in vivo and in vitro. The present study reports a potential method of using PBM to facilitate the transfer of mitochondria to neurons for the treatment of SCI.

16.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050614

RESUMO

The longwall mining method with gob-side entry retaining via roof cutting is a new underground coal mining method which has the characteristics of a high resource recovery ratio and environmental friendliness. Due to the complexity of this method, the research method of case-based dynamic on-site monitoring, analysis, adjustment, and optimization is usually adopted. Based on a roadway retaining via roof cutting project, in addition to the traditional indirect monitoring method of hydraulic support pressure, this study innovatively establishes a direct monitoring method for roof caving by monitoring the gangue pressure in the goaf, which provides data for the roof cutting effect and offers a new method for studying the overlying strata movement. In the project, a comprehensive monitoring and analysis system was established, including gangue pressure, cable bolt stress, bracket pressure, roadway deformation, and roof separation, which was used to dynamically analyze the effect of roof cutting and optimize the support design. The results show that the pressure of the hydraulic support close to the roof cutting is low, indicating that roof cutting is favorable in the roadway retaining mining method. The roadway deformation in the advanced abutment pressure area of the working face is small. The mining-induced stress caused by the collapse and compaction of the overlying strata in the goaf is the dominant factor affecting the effect of roadway retaining, especially in the 50-100 m range behind the working face, where the dynamic load causes high bearing capacity of the support elements, large roadway convergence, and roof separation. Temporary support and supplementary reinforcement should be added when necessary. The monitoring system presented in this study is highly comprehensive, simple, reliable, and low in cost, providing a reference for roof cutting roadway retaining projects and roof caving-related studies.

17.
Neural Regen Res ; 18(9): 2005-2010, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36926726

RESUMO

Increasing evidence indicates that mitochondrial fission imbalance plays an important role in delayed neuronal cell death. Our previous study found that photobiomodulation improved the motor function of rats with spinal cord injury. However, the precise mechanism remains unclear. To investigate the effect of photobiomodulation on mitochondrial fission imbalance after spinal cord injury, in this study, we treated rat models of spinal cord injury with 60-minute photobiomodulation (810 nm, 150 mW) every day for 14 consecutive days. Transmission electron microscopy results confirmed the swollen and fragmented alterations of mitochondrial morphology in neurons in acute (1 day) and subacute (7 and 14 days) phases. Photobiomodulation alleviated mitochondrial fission imbalance in spinal cord tissue in the subacute phase, reduced neuronal cell death, and improved rat posterior limb motor function in a time-dependent manner. These findings suggest that photobiomodulation targets neuronal mitochondria, alleviates mitochondrial fission imbalance-induced neuronal apoptosis, and thereby promotes the motor function recovery of rats with spinal cord injury.

18.
Neural Regen Res ; 18(8): 1782-1788, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36751806

RESUMO

As a classic noninvasive physiotherapy, photobiomodulation, also known as low-level laser therapy, is widely used for the treatment of many diseases and has anti-inflammatory and tissue repair effects. Photobiomodulation has been shown to promote spinal cord injury repair. In our previous study, we found that 810 nm low-level laser therapy reduced the M1 polarization of macrophages and promoted motor function recovery. However, the mechanism underlying this inhibitory effect is not clear. In recent years, transcriptome sequencing analysis has played a critical role in elucidating the progression of diseases. Therefore, in this study, we performed M1 polarization on induced mouse bone marrow macrophages and applied low-level laser therapy. Our sequencing results showed the differential gene expression profile of photobiomodulation regulating macrophage polarization. We analyzed these genes using gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Networks of protein-protein interactions and competing RNA endogenous networks were constructed. We found that photobiomodulation inhibited STAT3 expression through increasing the expression of miR-330-5p, and that miR-330-5p binding to STAT3 inhibited STAT3 expression. Inducible nitric oxide synthase showed trends in changes similar to the changes in STAT3 expression. Finally, we treated a mouse model of spinal cord injury using photobiomodulation and confirmed that photobiomodulation reduced inducible nitric oxide synthase and STAT3 expression and promoted motor function recovery in spinal cord injury mice. These findings suggest that STAT3 may be a potential target of photobiomodulation, and the miR-330-5p/STAT3 pathway is a possible mechanism by which photobiomodulation has its biological effects.

19.
Clin Exp Rheumatol ; 41(6): 1262-1274, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36762746

RESUMO

OBJECTIVES: The COVID-19 pandemic caused by SARS-CoV-2 has seriously threatened the human health. Growing evidence shows that COVID-19 patients who recovery will persist with symptoms of fibromyalgia (FM). However, the common molecular mechanism between COVID-19 and FM remains unclear. METHODS: We obtained blood transcriptome data of COVID-19 (GSE177477) and FM (GSE67311) patients from GEO database, respectively. Subsequently, we applied Limma, GSEA, Wikipathway, KEGG, GO, and machine learning analysis to confirm the common pathogenesis between COVID-19 and FM, and screened key genes for the diagnosis of COVID-19 related FM. RESULTS: A total of 2505 differentially expressed genes (DEGs) were identified in the FM dataset. Functional enrichment analysis revealed that the occurrence of FM was intimately associated with viral infection. Moreover, WGCNA analysis identified 243 genes firmly associated with the pathological process of COVID-19. Subsequently, 50 common genes were screened between COVID-19 and FM, and functional enrichment analysis of these common genes primarily involved in immunerelated pathways. Among these common genes, 3 key genes were recognised by machine learning for the diagnosis of COVID-19 related FM. We also developed a diagnostic nomogram to predict the risk of FM occurrence which showed excellent predictive performance. Finally, we found that these 3 key genes were closely relevant to immune cells and screened potential drugs that interacted with the key genes. CONCLUSIONS: Our study revealed the bridge role of immune dysregulation between COVID-19 and fibromyalgia, and screened underlying biomarkers to provide new clues for further clinical research.


Assuntos
COVID-19 , Fibromialgia , Humanos , SARS-CoV-2 , Fibromialgia/diagnóstico , Fibromialgia/epidemiologia , Fibromialgia/genética , Pandemias , Transcriptoma , Aprendizado de Máquina , Biologia Computacional
20.
Aging (Albany NY) ; 15(4): 1158-1176, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36842142

RESUMO

Numerous studies have documented that immune responses are crucial in the pathophysiology of spinal cord injury (SCI). Our study aimed to uncover the function of immune-related genes (IRGs) in SCI. Here, we comprehensively evaluated the transcriptome data of SCI and healthy controls (HC) obtained from the GEO Database integrating bioinformatics and experiments. First, a total of 2067 DEGs were identified between the SCI and HC groups. Functional enrichment analysis revealed substantial immune-related pathways and functions that were abnormally activated in the SCI group. Immune analysis revealed that myeloid immune cells were predominantly upregulated in SCI patients, while a large number of lymphoid immune cells were dramatically downregulated. Subsequently, 51 major IRGs were screened as key genes involved in SCI based on the intersection of the results of WGCNA analysis, DEGs, and IRGs. Based on the expression profiles of these genes, two distinct immune modulation patterns were recognized exhibiting opposite immune characteristics. Moreover, 2 core IRGs (FCER1G and NFATC2) were determined to accurately predict the occurrence of SCI via machine learning. qPCR analysis was used to validate the expression of core IRGs in an external independent cohort. Finally, the expression of these core IRGs was validated by sequencing, WB, and IF analysis in vivo. We found that these two core IRGs were closely associated with immune cells and verified the co-localization of FCER1G with macrophage M1 via IF analysis. Our study revealed the key role of immune-related genes in SCI and contributed to a fresh perspective for early diagnosis and treatment of SCI.


Assuntos
Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Transcriptoma , Macrófagos/metabolismo , Biologia Computacional/métodos , Diagnóstico Precoce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...