Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Biochem Genet ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847869

RESUMO

Breast cancer is a global disease and a cause of cancer-related deaths in women. Long non-coding RNAs (lncRNAs) perform important functions in biological processes. The aim of this study was to verify the functions and regulatory mechanisms of linc01152 in breast cancer. Relative expression of linc01152 was measured using RT-PCR. siRNAs targeting linc01152 were designed to inhibit its expression. Cell viability, cell invasion, and migration capacities were determined using CCK-8 and Transwell assays. Downstream targets, miRNAs, and mRNAs were predicted and validated using luciferase reporter assay. The expression of linc01152 in breast cancer cells was higher than that in normal breast cells, with BT474 and MDA-MB-468 cell lines presenting the highest expression levels of linc01152. The inhibition of linc01152 expression led to lower cell viability and attenuated cell migration and invasion. The regulatory network of linc01152-miR-320a-MTDH was validated using luciferase reporter assay. The inhibition of miR-320a expression reversed the effect of si-linc01152 on cell viability, migration, and invasion. Taken together, the linc01152-miR-320a-MTDH regulatory network is correlated with the pathogenesis of breast cancer.

2.
Sci Total Environ ; 941: 173678, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848919

RESUMO

The incomplete degradation of antibiotics in water can produce intermediates that carry environmental risks and thus warrant concerns. In this study, the degradation of high concentrations of antibiotic sulfadiazine (SDZ) by advanced oxidation processes that leverage different reactive oxide species was systematically evaluated in terms of the influence of different degradation intermediates on the propagation of antibiotic resistance genes (ARGs). The ozone, persulfate, and photocatalytic oxidation systems for SDZ degradation are dominated by ozone, direct electron transfer, and singlet oxygen, hole, and superoxide radicals, respectively. These processes produce 15 intermediates via six degradation pathways. Notably, it was determined that three specific intermediates produced by the ozone and persulfate systems were more toxic than SDZ. In contrast, the photocatalytic system did not produce any intermediates with toxicity exceeding that of SDZ. Microcosm experiments combined with metagenomics confirmed significant changes in microbiota community structure after treatment with SDZ and its intermediates, including significant changes in the abundance of Flavobacterium, Dungenella, Archangium, and Comamonas. This treatment also led to the emergence of sulfonamide ARGs. The total abundance of sulfonamide ARGs was found to be positively correlated with residual SDZ concentration, with the lowest total abundance observed in the photocatalytic system. Additionally, the correlation analysis unveiled microbiota carrying sulfonamide ARGs.


Assuntos
Antibacterianos , Resistência Microbiana a Medicamentos , Oxirredução , Sulfadiazina , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Resistência Microbiana a Medicamentos/genética , Antibacterianos/toxicidade , Biodegradação Ambiental
3.
Biotechnol Bioeng ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778433

RESUMO

Kluyveromyces marxianus, a thermotolerant, fast-growing, Crabtree-negative yeast, is a promising chassis for the manufacture of various bioproducts. Although several genome editing tools are available for this yeast, these tools still require refinement to enable more convenient and efficient genetic modification. In this study, we engineered the K. marxianus NBRC 104275 strain by impairing the nonhomologous end joining and enhancing the homologous recombination machinery, which resulted in improved homology-directed repair effective on homology arms of up to 40 bp in length. Additionally, we simplified the CRISPR-Cas9 editing system by constructing a strain for integrative expression of Cas9 nuclease and plasmids bearing different selection markers for gRNA expression, thereby facilitating iterative genome editing without the need for plasmid curing. We demonstrated that tRNA was more effective than the hammerhead ribozyme for processing gRNA primary transcripts, and readily assembled tRNA-gRNA arrays were used for multiplexed editing of at least four targets. This editing tool was further employed for simultaneous scarless in vivo assembly of a 12-kb cassette from three fragments and marker-free integration for expressing a fusion variant of fatty acid synthase, as well as the integration of genes for starch hydrolysis. Together, the genome editing tool developed in this study makes K. marxianus more amenable to genetic modification and will facilitate more extensive engineering of this nonconventional yeast for chemical production.

4.
Opt Express ; 32(7): 11895-11906, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571027

RESUMO

Pure-quartic solitons (PQSs) have recently received increasing attention due to their energy-width scaling over the traditional soliton, which has expanded our understanding of soliton dynamics with high-order dispersion in nonlinear systems. Here, we numerically reveal the asynchronization and synchronization processes of the sub-pulse within the vector PQS molecule in a mode-locked fiber laser by solving the coupled Ginzburg-Landau equations. During the establishment of a vector PQS molecule, the repulsion, attraction, and finally stabilization processes have been observed. Specifically, sub-pulse disappearance, regeneration, and finally synchronization with the other pulses are also investigated. Our analysis of the pulse energy, time interval, and relative phase evolution dynamics with the round trip indicates that the asynchronization and synchronization within the vector PQS molecule associate tightly with the gain competition and the cross-phase modulation. Our findings provide insights into the internal mutual dynamics within the vector soliton molecule and offer guidance for the applications of PQS.

5.
Opt Lett ; 49(7): 1766-1769, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560858

RESUMO

Dual-comb microscopy enables high-speed and high-precision optical sampling by simultaneously extracting both amplitude and phase information from the interference signals with frequency division multiplexing. In this Letter, we introduce a spatiotemporal encoding approach for dual-comb microscopy that overcomes previous limitations such as mechanical scanning, low sampling efficiency, and system complexity. By employing free-space angular-chirp-enhanced delay (FACED) and a low-noise single-cavity dual-comb laser, we achieve scan-less 3D imaging with nanometer precision and a 3D distance-imaging rate of 330 Hz, restricted only by the repetition rate difference of the dual-comb laser. Specifically, the FACED unit linearly arranges the laser beam into an array. A grating subsequently disperses this array transversely into lines, facilitating ultrafast spectroscopic applications that are 1-2 orders of magnitude quicker than traditional dual-comb methods. This spatiotemporal encoding also eases the stringent conditions on various dual-comb laser parameters, such as repetition rates, coherence, and stability. Through carefully designed experiments, we demonstrate that our scan-less system can measure 3D profiles of microfabricated structures at a rate of 7 million pixels per second. Our method significantly enhances measurement speed while maintaining high precision, using a compact light source. This advancement has the potential for broad applications, including phase imaging, surface topography, distance ranging, and spectroscopy.

6.
Womens Health Rep (New Rochelle) ; 5(1): 334-339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596477

RESUMO

Intravascular leiomyoma (IVL) is usually defined as a histologically benign leiomyoma that originates in a uterine fibroid or the intrauterine vein wall and grows and expands intravenously. We report a case in which pelvic IVL was detected early and discuss the early diagnosis of and best treatment for this tumor.

7.
Food Chem ; 447: 138980, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38564849

RESUMO

Supercooling is a main controllable factor for the fundamental understanding the high-pressure shift freezing (HPSF). In the study, a self-developed device based on the diamond anvil cell (DAC) and confocal Raman microscopy was utilized to realize an in-situ investigation of supercooling behaviour during HPSF of the pure water and sucrose solution. The spectra were used to determine the freezing point which is shown as a spectral phase marker (SD). The hydrogen bond strengths of water and sucrose solution under supercooling states were estimated by peak position and peak area ratio of sub-peaks. The results showed that the OH stretching bands had redshift under supercooling states. Moreover, the addition of sucrose molecules could strengthen the hydrogen bonding strength of water molecules under supercooling states. Thus, the DAC combined with Raman spectroscopy could be considered a novel strategy for a deep understanding of the supercooling behaviour during HPSF.


Assuntos
Água , Congelamento , Água/química , Temperatura de Transição , Microscopia Confocal , Ligação de Hidrogênio
8.
Front Oncol ; 14: 1301327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444673

RESUMO

Background: Notwithstanding the acknowledged interplay between atrial fibrillation (AF) and the emergence of digestive system neoplasms, the intricacies of this relationship remain ambiguous. By capitalizing univariable Mendelian Randomization (MR) complemented by a mediated MR tactic, our pursuit was to elucidate the causative roles of AF in precipitating digestive system malignancies and potential intermediary pathways. Method: This research endeavor seeks to scrutinize the causal clinical implications of whether genetic predispositions to AF correlate with an increased risk of digestive system malignancies, employing MR analytical techniques. Utilizing a dataset amalgamated from six studies related to AF, encompassing over 1,000,000 subjects, we performed univariable MR assessments, employing the random-effects inverse-variance weighted (IVW) methodology as our principal analytical paradigm. Subsequently, a mediated MR framework was employed to probe the potential mediating influence of AF on the nexus between hypertension (HT), heart failure (HF), ischemic stroke (IS), coronary artery disease (CAD), and digestive system neoplasms. Result: The univariable MR evaluation unveiled a notable causal nexus between the genetic inclination toward AF and the genetic susceptibility to colon, esophageal, and small intestine malignancies. The mediated MR scrutiny ascertained that the genetic inclination for AF amplifies the risk profile for colon cancer via IS pathways and partially explains the susceptibility to esophageal and small intestine tumors through the HF pathway. Conclusion: Our investigative endeavor has highlighted a definitive causative association between genetic inclination to AF and specific digestive system neoplasms, spotlighting IS and HF as instrumental mediators. Such revelations furnish pivotal perspectives on the complex genetic interconnections between cardiovascular anomalies and certain digestive tract tumors, emphasizing prospective therapeutic and diagnostic worthy of pursuit.

9.
J Zhejiang Univ Sci B ; : 1-11, 2024 Feb 08.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38423538

RESUMO

Intelligence quotient (IQ) and adaptive behavior are the influencing factors of autism spectrum disorder (ASD) in children entering mainstream schools. This study explored the association between parental education level, IQ, and adaptive behavior in ASD groups. A total of 257 school-age ASD children were enrolled in our study from January 2017 to June 2021. Their parents completed a standard demographic form, including age at autism diagnosis, gender, school placement, and parents' educational background. The Chinese version of the Wechsler Intelligence Scale for Children, Fourth Edition (WISC-IV) was completed by a certified assessor for each enrolled child. Parents were interviewed on adaptive behavior using the Chinese version of the Adaptive Behavior Assessment System, Second Edition (ABAS-II). The average IQ of school-age ASD children was 76.88 (standard deviation (SD)=22.62) and boys had higher IQ levels than girls. The IQ was positively correlated with age. The General Adaptive Composite (GAC) score was 82.47 (SD=15.86) and adaptive behavior did not increase with age. ASD children who attended mainstream schools had better adaptive behavior profiles than other children. The mother's education level showed a significant correlation with the IQ and adaptive behavior of autistic children, while the father's education level did not. Consequently, better training and support for parents may help autistic children enter mainstream schools, with adaptive training being the most urgently required skill for parents.

10.
ChemSusChem ; 17(7): e202301213, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38095357

RESUMO

Solar driven proton exchange membrane water electrolysis (PEMWE) is of great promise for stable and high-purity H2 production, but often limited by the serious partial loading issue due to the intermittent nature of solar energy, the kinetically sluggish oxygen evolution reaction (OER) and the usage of noble metal-based anodes (e. g., Pt, Ir, and Ru). Herein, we report an efficient integrated water electrolysis by replacing OER with favorable pyrrole electrooxidation polymerization for H2 generation in acidic solutions, wherein nonprecious Co2P and carbon cloth (CC) served as cathode and anode, respectively. A voltage of only 1.0 V was needed to afford 10 mA cm-2, 590 mV smaller than that in traditional PEMWE based on noble Pt/C@RuO2 benchmark couple. Moreover, simple carbonization of the resulting polypyrrole/CC at anode yielded a supercapacitor electrode with a high specific capacitance of 290 F g-1 at 1 A g-1 and robust stability, which then functioned as energy reservoir to alleviate the partial loading issue for coproduction of solar H2 and supercapacitor electrode.

11.
Adv Mater ; 36(16): e2307599, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37797262

RESUMO

Advanced solid electrolytes with strong adhesion to other components are the key for the successes of solid-state batteries. Unfortunately, traditional solid electrolytes have to work under high compression to maintain the contact inside owing to their poor adhesion. Here, a concept of high-entropy tape electrolyte (HETE) is proposed to simultaneously achieve tape-like adhesion, liquid-like ion conduction, and separator-like mechanical properties. This HETE is designed with adhesive skin layer on both sides and robust skeleton layer in the middle. The significant properties of the three layers are enabled by high-entropy microstructures which are realized by harnessing polymer-ion interactions. As a result, the HETE shows high ionic conductivity (3.50 ± 0.53 × 10-4 S cm-1 at room temperature), good mechanical properties (toughness 11.28 ± 1.12 MJ m-3, strength 8.18 ± 0.28 MPa), and importantly, tape-like adhesion (interfacial toughness 231.6 ± 9.6 J m-2). Moreover, a compression-free solid-state tape battery is finally demonstrated by adhesion-based assembling, which shows good interfacial and electrochemical stability even under harsh mechanical conditions, such as twisting and bending. The concept of HETE and compression-free solid-state tape batteries may bring promising solutions and inspiration to conquer the interface challenges in solid-state batteries and their manufacturing.

12.
Int J Biol Macromol ; 254(Pt 2): 127776, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907180

RESUMO

Inspired by the natural plant cuticles, a novel strategy was proposed for the fabrication of biomimetic plant cuticles from pullulan-graphene oxide (PU-GO) and beeswax-stearic acid (BW-SA), which could serve as hydrophilic polysaccharides and hydrophobic waxes, respectively. PU-GO and PU-GO/BW-SA in different GO concentrations (0, 10, 30 and 50 µg/mL) were prepared, and their structural characteristics and basic properties were investigated. Results showed that PU-GO/BW-SA possessed a hydrophilic layer and a hydrophobic structure similar to the structure of natural plant cuticles. The incorporation of GO enhanced the barrier properties of the films and PU-GO/BW-SA showed a higher contact angle, lower tensile strength and higher barrier properties compared with PU-GO. In addition, PU-GO/BW-SA in 10 µg/mL GO concentration (PU-GO10/BW-SA) possessed the lowest WVP (7.2 × 10-7 g/(m h Pa)) and a contact angle (93.78°) similar to natural plant cuticles. Applications in Citrus Limon Rosso further proved the potential of PU-GO10/BW-SA as a biomimetic plant cuticle in fruit preservation.


Assuntos
Citrus , Biomimética , Ceras/química
13.
Small ; 20(23): e2307086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38155510

RESUMO

In analogy to the cell microenvironment in biology, understanding and controlling the active-material microenvironment (ME@AM) microstructures in battery electrodes is essential to the successes of energy storage devices. However, this is extremely difficult for especially high-capacity active materials (AMs) like sulfur, due to the poor controlling on the electrode microstructures. To conquer this challenge, here, a semi-dry strategy based on self-assembled nano-building blocks is reported to construct nest-like robust ME@AM skeleton in a solvent-and-stress-less way. To do that, poly(vinylidene difluoride) nanoparticle binder is coated onto carbon-nanofibers (NB@CNF) via the nanostorm technology developed in the lab, to form self-assembled nano-building blocks in the dry slurry. After compressed into an electrode prototype, the self-assembled dry-slurry is then bonded by in-situ nanobinder solvation. With this strategy, mechanically strong thick sulfur electrodes are successfully fabricated without cracking and exhibit high capacity and good C-rate performance even at a high AM loading (25.0 mg cm-2 by 90 wt% in the whole electrode). This study may not only bring a promising solution to dry manufacturing of batteries, but also uncover the ME@AM structuring mechanism with nano-binder for guiding the design and control on electrode microstructures.

14.
Food Chem ; 439: 138114, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100877

RESUMO

To develop a novel active packaging for fruit preservation, two different deep eutectic solvents (DESs) comprising choline chloride, betaine and glycerol [ChCl:Gly (1:2) and Be:Gly (1:2)] were prepared and the corresponding DESs-based films (DES@Gel) using gelatin as polymer matrix were fabricated. DES@Gel showed smoother morphologies and better optical and mechanical properties as compared with Gel. Moisture sorption isotherm curves, the enhancement of water vapour permeability (WVP) and the excellent moisture absorption-desorption cyclist performance illustrated the moisture regulation hypothesis mechanism of DES@Gel. Furthermore, cherry tomato preservation experiment was carried out and the groups treated with DES@Gel showed better performances. The moisture regulation property of DES@Gel could broaden new avenues for active packaging.


Assuntos
Frutas , Gelatina , Solventes , Solventes Eutéticos Profundos , Glicerol , Colina
15.
ACS Nano ; 18(1): 1098-1109, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38154058

RESUMO

A polymer separator plays a pivotal role in battery safety, overall electrochemical performance, and cell assembly process. Traditional separators are separately produced from the electrodes and dominated by porous polyolefin thin films. In spite of their commercial success, today's separators are facing growing challenges with the increasing demand on the device safety and performance. As an attempt to address this urgent need, here, we propose a concept of in situ separator technology by manipulating the two-dimensional (2D) microfluid nanophase separation (2D-MFPS) of a poly(vinylidene difluoride)/lithium salt solution during drying. Particularly, nanophase separation is effectively regulated by low humidity, salt type, and compositions. For application studies, this 2D-MFPS is directly performed onto commercial electrodes under drying conditions with low humidity to fabricate a high-performance in situ separator with thickness and porous structures comparable to those of commercial Celgard separators. This in situ separator shows superior performance in high-temperature stability and wetting capability to a variety of liquid electrolytes. Finally, pouch cells with this in situ separator technology are successfully assembled with an extremely simplified separator-stacking-free process and demonstrate stable cycle performance due to the well-controlled porous structures and electrode-separator interface.

16.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065156

RESUMO

Compliant amplification mechanisms are widely applied to extend the stroke of stacked piezoelectric actuators. Accurate modeling of static and dynamic performances is crucial for the optimal design of complex compliant mechanisms. By generalizing the planar element-node model-based finite element method, this paper proposes a new modeling method capable of describing the spatial complete kinetostatics and dynamics for compliant mechanisms. On the basis of the widely reported complete compliance models for flexure hinges, a versatile stiffness model is established for the hinge with an arbitrary notch shape through the force equilibrium model. The generalized model is then demonstrated by applying for modeling and optimizing a compliant mechanism with dual-stage amplification. The verification through finite element simulations suggests that the maximum modeling error for the kinetostatic and first six resonant frequencies for the mechanisms with and without structural optimizations is less than 20%. Finally, the open-loop and closed-loop performance tests on the prototype with optimized parameters are conducted, demonstrating the effectiveness of the developed modeling and optimization methods.

17.
ACS Omega ; 8(49): 46892-46903, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107896

RESUMO

Restoring the sedimentary environment of paleolakes is of great significance to the formation of laminated calcareous shale deposited in paleolakes and the prediction of shale oil reservoir distribution. This article focuses on the second section shale of the Paleogene in the Funing Formation in the Gaoyou Sag, Subei Basin, China, and uses X-ray fluorescence diffraction technology and core lithology analysis methods to obtain the content datum of major and trace elements such as Sr, Cu, Ba, Ga, V, and Ni in shale at different depths. Based on the empirical values of Sr/Cu, Sr/Ba, V/(V + Ni), and total organic carbon, paleoenvironmental evolution of the continental shale was determined and studied, including the changes in paleoclimate temperature, paleosalinity, paleowater depth, and strong or weak redox intensity. The research results indicate that the sedimentary environment of the paleolake in the Paleogene Funing Formation, second section, in the Gaoyou Sag is mainly characterized by a dry and hot climate; the salinity of paleolake water is that of stable brackish water, and the entire sedimentary period of the Funing Formation, second section, is dominated by a reduction environment, which is conducive to the preservation of sedimentary organic matter. The frequent changes in the depth of sedimentary water and the alternating dry and hot climate are the main reasons for the development of laminated calcareous shale in the second section of the Paleogene Funing Formation of the Gaoyou Sag and have also contributed to the abundant commercial resources of laminated calcareous shale oil in the second section of the Funing Formation.

18.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117196

RESUMO

Establishing a novel design and accurate analytical models for XY nanopositioning stages based on voice coil motor (VCM) actuators is critical to achieving an optimal working performance. To overcome the existing design challenges of 2-degree-of-freedom guiding mechanisms, a four-layer structure composed of L-shaped spatial double parallelogram flexure mechanisms was proposed for the magnetic stage, which exhibits light weight and inhibits parasitic and decoupled motions. The guiding mechanisms were modeled by the compliance matrix method. Thereafter, by combining an electromagnetic model for the VCMs with the equivalent magnetic network method, an electromagnetic-mechanical coupling optimization method with multiple constraints was proposed for the stage to achieve a millimeter-range motion with a maximized natural frequency. The mechanical and electromagnetic performances were then verified by finite element analysis software. The optimized prototype was tested with a stroke of ±3.41 and ±3.08 mm for X axis and Y axis, respectively, a closed-loop resolution of 100 nm for X axis and 150 nm for Y axis, and a resonant frequency of 11.75 Hz for both axes. The tracking of a 0.1 Hz spiral of Archimedes achieved a maximum tracking error of 2.9%.

19.
Opt Express ; 31(22): 35529-35541, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017721

RESUMO

Pure-quartic soliton (PQS) fiber lasers provide a promising avenue for exploring novel soliton interaction dynamics and generating high-energy pulses. Here, we present the numerical observation of vector PQSs generation and the evolution dynamics in a mode-locked fiber laser, using the coupled Ginzburg-Landau equations. We investigate the buildup dynamics of vector PQSs in a mode-locked laser with birefringent fibers, passing through three stages: energy amplification, energy pulsation owing to the cross-phase modulation (XPM) effect, and finally stabilization. Depending on the strength of the cavity-birefringence, the evolution of PQSs in non-polarization-maintaining fibers reveals that both the elliptical-polarization vector PQSs and near-linear-polarization vector PQSs can be formed by the energy conservation and balance between the two orthogonal directions. Additionally, we observe the transition process from vector PQSs to scalar PQSs with higher cavity-birefringence, resulting from the failure compensation of the walk-off via the soliton trapping effect between the two orthogonal components. These results provide valuable insights into the ultrafast transient process of vector solitons and enhance the understanding of PQS generation in fiber lasers.

20.
Opt Express ; 31(20): 32373-32382, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859042

RESUMO

Synchronised ultrafast soliton lasers have attracted great research interest in recent decades. However, there is a lack of comprehensive understanding regarding the buildup mechanism of synchronised pulses. Here, we report a dynamic analysis of independent and synchronised solitons buildup mechanisms in synchronised ultrafast soliton lasers. The laser comprises an erbium-doped fibre cavity and a thulium-doped fibre cavity bridged with a common arm. Pulses operating at two different wavelengths formed in the cavities are synchronised by cross-phase modulation-induced soliton correlation in the common fibre arm. We find that the whole buildup process of the thulium-doped fibre laser successively undergoes five different stages: continuous wave, relaxation oscillation, quasi-mode-locking, continuous wave mode-locking and synchronised mode-locking. It is found that the starting time of the synchronised solitons is mainly determined by the meeting time of dual-color solitons. Our results will further deepen the understanding of dual-color synchronised lasers and enrich the study of complex nonlinear system dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...