Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(4)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36265415

RESUMO

Triethylamine (TEA) exists widely in production and life and is extremely volatile, which seriously endangers human health. It is required to develop high-performance TEA sensors to protect human health. We fabricated Pt-Co3O4/WO3based on our previous work, and the performance was tested against volatile organic compounds. Compared with the previous work, its operating temperature was greatly reduced from 240 °C to 180 °C. The response value of Pt-Co3O4/WO3was increased from 1101 to 1532 for 10 ppm TEA with good selectivity. These results show a significant step toward practical use of the Pt-Co3O4/WO3sensor.

2.
ACS Sens ; 7(1): 199-206, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34928579

RESUMO

As an important organic chemical raw material, methanol is used in various industries but is harmful to human health. Developing an effective and accurate detection device for methanol is an urgent need. Herein, we demonstrate a novel gas-sensing material with a Pt single atom supported on a porous Ag-LaFeO3@ZnO core-shell sphere (Ag-LaFeO3@ZnO-Pt) with a high specific surface area (192.08 m2·g-1). Based on this, the surface activity of the Ag-LaFeO3@ZnO-Pt gas sensor is enhanced obviously, which improved the working temperature and detection limit for methanol gas. Consequently, this sensor possesses an ultrahigh sensitivity of 453.02 for 5 ppm methanol gas at a working temperature of 86 °C and maintains a high sensitivity of 21.25 even at a concentration as low as 62 ppb. The sensitivity of Ag-LaFeO3@ZnO-Pt to methanol gas is increased by 6.69 times compared with the Ag-LaFeO3@ZnO core-shell sphere (Ag-LaFeO3@ZnO). Additionally, the minimum detection limit is found to be 3.27 ppb. Detailed theoretical calculations revealed that the unoccupied 5d state of Pt single atoms increases the adsorption and activation energy of methanol and oxygen, which facilities methanol gas-sensing performance. This work will provide a novel strategy to design high-performance gas-sensing materials.


Assuntos
Metanol , Óxido de Zinco , Adsorção , Humanos , Porosidade
3.
ACS Appl Mater Interfaces ; 12(38): 42962-42970, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32875790

RESUMO

Triethylamine is extremely harmful to human health, and chronic inhalation can lead to respiratory and hematological diseases and eye lesions. Hence, it is essential to develop a triethylamine gas-sensing technology with high response, selectivity, and stability for use in healthcare and environmental monitoring. In this work, a simple and low-cost sensor based on the Pt- and Ce-modified In2O3 hollow structure to selectively detect triethylamine is developed. The experimental results reveal that the sensor based on 1% Pt/Ce12In exhibits excellent triethylamine-sensing performance, including its insusceptibility to water, reduced operating temperature, enhanced response, and superior long-term stability. This work suggests that the enhancement of sensing performance toward triethylamine can be attributed to the high relative contents of OV and OC, large specific surface area, catalytic effect, the electronic sensitization of Pt, and the reversible redox cycle properties of Ce. This sensor represents a unique and highly sensitive means to detect triethylamine, which shows great promise for potential applications in food safety inspection and environmental monitoring.

4.
Nanotechnology ; 31(40): 405701, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32187585

RESUMO

High performance acetone gas sensors were fabricated with molecular imprinted polymers of Ag-LaFeO3 (ALFOMMIPs) and multi walled carbon nanotubes (CNTs) composite using the microwave assisted sol-gel method. The crystalline structure, functional groups, grain size and surface appearance of the synthesized materials were analyzed via different characterization techniques and the gas responses of the samples were examined. The detailed acetone gas sensing tests and analysis revealed that the CNTs and ALFOMIPs nanocomposite (CNT/ALFOMIP) sample possessed a higher response than that of the ALFOMIPs sample. Where 0.75 wt% CNTs were added into the ALFOMIPs (0.75% CNT/ALFOMIP nanocomposite) sensor, an excellent gas sensing performance was exhibited. The response of this sensor was up to 59 for 5 ppm acetone vapors and the response and recovery times were 58 and 33 s at low working temperature of 86 °C, respectively. In addition, it had the best selectivity only to acetone vapors due to the use of the molecular imprinting technique.

5.
Nanotechnology ; 31(21): 215601, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32032011

RESUMO

To address the urgent issues of hazardous gas detection and the prevention of environmental pollution, various functional materials for gas sensing and catalytic reduction have been studied. Specifically, the p-type perovskite LaFeO3 has been studied widely because of its promising physicochemical properties. However, there remains several problems to develop a controllable synthesis of LaFeO3-based p-n heterojunctions. In this work, α-Fe2O3 was further compounded with LaFeO3 to form a porous and hollow α-Fe2O3/LaFeO3 heterojunction to improve its gas-sensing performance and photocatalytic efficiency via a microwave-assisted hydrothermal method. While evaluated as sensors of acetone gas, the optimized sample exhibits excellent performance, including a high response (48.3), excellent selectivity, good reversibility, fast response, and recovery ability. Furthermore, it is an efficient catalyst for the degradation of methylene blue. This can be attributed to the enhancement effect of its larger specific surface area, fast diffusion, enhanced surface activities, and p-n heterojunction. Additionally, this work provides a rapid and rational synthesis strategy to produce metal oxides with both enhanced gas-sensing performance and improved photocatalytic properties.

6.
Nanotechnology ; 31(25): 255501, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31995528

RESUMO

Xylene is a volatile organic compound which is harmful to the human health and requires precise detection. The detection of xylene by an oxide semiconductor gas sensor is an important research direction. In this work, Co3O4 decorated flower-like SnO2 nanorods (SnO2/Co3O4 NRs) were synthesized by a simple and effective two-step method. The SnO2/Co3O4 NRs show high xylene response (R g/R a = 47.8 for 100 ppm) and selectivity at the operating temperature of 280 °C, and exhibit high stability in continuous testing. The resulting SnO2/Co3O4 NRs nanocomposites show superior sensing performance towards xylene in comparison with pure SnO2 nanorods. The remarkable enhancement in the gas-sensing properties of SnO2/Co3O4 NRs are attributed to larger specific surface area and the formation of p-n heterojunction between Co3O4 and SnO2. These results demonstrate that particular nanostructures and synergistic effect of SnO2 and Co3O4 enable gas sensors to selectively detect xylene.

7.
ChemSusChem ; 12(18): 4285-4292, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31336044

RESUMO

Low charge-separation transport efficiency resulting from structural defects largely limits photocatalytic hydrogen production over polymeric graphitic carbon nitride (PCN) photocatalyst. Herein, an electron-donating group, namely p-phenylene, is incorporated into PCN by a polycondensation reaction between carbon nitride and p-phenylenediamine (or p-benzoquinone) to repair the structural defects. The p-phenylene-modified PCN exhibits an almost fivefold increase in H2 evolution, a threefold increase in photocurrent density, and higher nonradiative rate (0.285 ns-1 ). Spectroscopic studies confirm that p-phenylene tends to bridge the heptazine-based oligomers through a polycondensation reaction. Theoretical calculations reveal that anchoring of the heptazine units by p-phenylene induces localization of h+ and e- on the phenylene and melem moieties, respectively, which effectively separates the charge carriers. This strategy provides an opportunity to overcome structural defects in carbon nitride for efficient photocatalytic solar energy conversion.

8.
J Nanosci Nanotechnol ; 19(9): 5878-5884, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30961753

RESUMO

Monoclinic and hexagonal LaPO4 nanorods were prepared through hydrothermal method without the assistance of additives. The products were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). Monoclinic and hexagonal LaPO4 nanorods can be achieved by adjusting the hydrothermal temperature and the pH value. The photocatalytic activity of monoclinic and hexagonal LaPO4 nanorods on rhodamine B (RB) and Congo red (CR) under UV irradiation was investigated, respectively. Interestingly, the monoclinic and hexagonal phase shows different photocatalytic performance for the photodegradation of the organic RB and CR dye.

9.
Nanoscale Res Lett ; 14(1): 57, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30767075

RESUMO

In this work, we synthesized Sm2O3/ZnO/SmFeO3 microspheres by a hydrothermal method combined with microwave assistance to serve as a methanol gas sensor. We investigated the effect on the microstructure at different hydrothermal times (12 h, 18 h, 24 h, and 30 h), and the BET and XPS results revealed that the specific surface area and adsorbed oxygen species were consistent with a microstructure that significantly influences the sensing performance. The gas properties of the Sm2O3-doped ZnO/SmFeO3 microspheres were also investigated. With a hydrothermal time of 24 h, the gas sensor exhibited excellent sensing performance for methanol gas. For 5 ppm of methanol gas at 195 °C, the response reached 119.8 with excellent repeatability and long-term stability in a 30-day test in a relatively high humidity atmosphere (55-75% RH). Even at 1 ppm of methanol gas, the response was also higher than 20. Thus, the Sm2O3-doped ZnO/SmFeO3 microspheres can be considered as prospective materials for methanol gas sensors.

10.
Sci Rep ; 8(1): 14220, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242223

RESUMO

An ultrasensitive methanol gas sensing device based on the quasi-molecular imprinting technology (quasi-MIT) is studied in this work. We applied the sol-gel method (ALS denotes Ag-LaFeO3 prepared by the sol-gel method) and combustion synthesis (ALC denotes Ag-LaFeO3 prepared by combustion synthesis) to prepare Ag-LaFeO3 based sensors. The morphologies and structures of the Ag-LaFeO3 materials were examined via various detection techniques. The ALSM and ALCM sensor (ALSM and ALCM denotes the devices prepared by coating the ALS and ALC materials with methanol, respectively) fabricated using the sol-gel method and combustion synthesis combined with quasi-MIT exhibit good gas sensing properties to methanol, in contrast with the two devices (ALSW and ALCW denote the devices prepared for coating the ALS and ALC materials with water, respectively) without the use of quasi-MIT. The results show that quasi-MIT introduced the target gas in the fabrication process of the device, playing an important role in the design of the ultrasensitive methanol gas sensor. The sensing response and the optimum working temperature of ALSM and ALCM gas sensor are 52.29 and 155 °C and 34.89 and 155 °C, respectively, for 5 ppm methanol, and the highest response to other gases is 8. The ALSM and ALCM gas sensors reveal good selectivity and response for methanol.

11.
ACS Appl Mater Interfaces ; 10(18): 15616-15623, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29687991

RESUMO

A printing process for the fabrication of perovskite solar cells (PSCs) exhibits promising future application in the photovoltaic industry due to its low-cost and eco-friendly preparation. In mesoscopic carbon-based PSCs, however, compared to conventional ones, the hole-transport-layer-free PSCs often lead to inefficient hole extraction. Here, we used liquid metal (LM, Galinstan) as an interface modifier material in combination with a carbon electrode. Considering the high conductivity and room-temperature fluidity, it is found that LMs are superior in improving hole extraction and, more importantly, LMs tend to be reserved at the interface between ZrO2 and carbon for enhancing the contact property. Correspondingly, the carrier transfer resistance was decreased at the carbon/perovskite interface. As optimized content, the triple mesoscopic PSCs based on mixed-cation perovskite with a power conversion efficiency of 13.51% was achieved, involving a 26% increase compared to those without LMs. This work opens new techniques for LMs in optoelectronics and printing.

12.
Nanotechnology ; 29(14): 145503, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29384139

RESUMO

Silver-doped LaFeO3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.

13.
Sci Rep ; 7(1): 12110, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935929

RESUMO

Ag-LaFeO3 molecularly imprinted polymers (ALMIPs) were fabricated, which provided special recognition sites to methanol. Then ALMIPs fiber 1, fiber 2 and fiber 3 were prepared using filter paper, silk and carbon fibers template, respectively. Based on the observation of X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Nitrogen adsorption surface area analyzer (BET), the structure, morphology and surface area of the fibers were characterized. The ALMIPs fibers (fiber 1, fiber 2 and fiber 3) show excellent selectivity and good response to methanol. The responses to 5 ppm methanol and the optimal operating temperature of ALMIPs fibers are 23.5 and 175 °C (fiber 1), 19.67 and 125 °C (fiber 2), 17.59 and 125 °C (fiber 3), and a lower response (≤10, 3, 2) to other test gases including formaldehyde, acetone, ethanol, ammonia, gasoline and benzene was measured, respectively.

14.
Materials (Basel) ; 10(2)2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28772569

RESUMO

Mixed phase TiO2 nanoparticles with element doping by Sm and C were prepared via a facile sol-gel procedure. The UV-Vis light-diffuse reflectance spectroscopy analysis showed that the absorption region of co-doped TiO2 was shifted to the visible-light region, which was attributed to incorporation of samarium and carbon into the TiO2 lattice during high-temperature reaction. Samarium effectively decreased the anatase-rutile phase transformation. The grain size can be controlled by Sm doping to achieve a large specific surface area useful for the enhancement of photocatalytic activity. The photocatalytic activities under visible light irradiation were evaluated by photocatalytic degradation of methylene blue (MB). The degradation rate of MB over the Sm-C co-doped TiO2 sample was the best. Additionally, first-order apparent rate constants increased by about 4.3 times compared to that of commercial Degusssa P25 under the same experimental conditions. Using different types of scavengers, the results indicated that the electrons, holes, and •OH radicals are the main active species for the MB degradation. The high visible-light photocatalytic activity was attributed to low recombination of the photo-generated electrons and holes which originated from the synergistic effect of the co-doped ions and the heterostructure.

15.
Sci Rep ; 7(1): 1960, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28512342

RESUMO

Air quality around the globe is declining and public health is seriously threatened by indoor air pollution. Typically, indoor air pollutants are composed of a series of volatile organic compounds (VOCs) that are generally harmful to the human body, especially VOCs with low molecular weights (less than 100 Da). Moreover, in some situations, more than one type of VOC is present; thus, a device that can detect one or more VOCs simultaneously would be most beneficial. Here, we synthesized a sensor array with 4 units to detect 4 VOCs: acetone (unit 1), benzene (unit 2), methanol (unit 3) and formaldehyde (unit 4) simultaneously. All units were simultaneously exposed to 2.5 ppm of all four VOCs. The sensitivity of unit 1 was 14.67 for acetone and less than 2.54 for the other VOCs. The sensitivities of units 2, 3 and 4 to benzene, methanol and formaldehyde were 2 18.64, 20.98 and 17.26, respectively, and less than 4.01 for the other VOCs. These results indicated that the sensor array exhibited good selectivity and could be used for the real-time monitoring of indoor air quality. Thus, this device will be useful in situations requiring the simultaneous detection of multiple VOCs.

16.
Phys Chem Chem Phys ; 19(10): 6973-6980, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28181601

RESUMO

Metal oxide semiconductors with special structures and morphologies have attracted considerable attention because of their promising applications in gas sensors. In this paper, Ag-LaFeO3 fibers, spheres and cages have been prepared. Based on X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), Brunauer-Emmett-Teller (BET) nitrogen adsorption and transmission electron microscopy (TEM) observations, the structure and morphology of the products were characterized. It has been revealed that the as-prepared materials have uniform morphologies and consist of numerous nanocrystals. Sensors based on the Ag-LaFeO3 fibers, spheres and cages all exhibited high responses and good selectivities to formaldehyde gas. Owing to their hollow and porous structure, large surface area and greater number of surface active sites, the Ag-LaFeO3 cages have the lowest operating temperature. The results suggest that the as-prepared Ag-LaFeO3 fibers, spheres and cages, especially the cages, are promising candidates for high performance formaldehyde sensors.

17.
Nanoscale Res Lett ; 11(1): 522, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27888496

RESUMO

The single-walled carbon nanotube (SWCNT)-molecularly imprinted powder (MIP) composites in this paper were prepared by mixing SWCNTs with MIPs. The structure and micrograph of the as-prepared SWCNTs-MIPs samples were characterized by XRD and TEM. The gas-sensing properties were tested through indirect-heating sensors based on SWCNT-MIP composites fabricating on an alumina tube with Au electrodes and Pt wires. The results showed that the structure of SWCNTs-MIPs is of orthogonal perovskite and the average particle size of the SWCNTs-MIPs was in the range of 10-30 nm. SWCNTs-MIPs exhibit good methanol gas-sensitive properties. At 90 °C, the response to 1 ppm methanol is 19.7, and the response to the interferent is lower than 5 to the other interferent gases (ethanol, formaldehyde, toluene, acetone, ammonia, and gasoline). The response time and recovery time are 50 and 58 s, respectively. The as prepared SWCNTs-MIPs possesses good selectivity and high response to low concentrationmethanol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...