Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38922082

RESUMO

In this study, the degradation system of Shewanella oneidensis MR-1 and goethite was constructed with chlorpyrifos as the target contaminant. The effects of initial pH, contaminant concentration, and temperature on the removal rate of chlorpyrifos during the degradation process were investigated. The experimental conditions were optimized by response surface methodology with a Box-Behnken design (BBD). The results show that the removal rate of chlorpyrifos is 75.71% at pH = 6.86, an initial concentration of 19.18 mg·L-1, and a temperature of 30.71 °C. LC-MS/MS analyses showed that the degradation products were C4H11O3PS, C7H7Cl3NO4P, C9H11Cl2NO3PS, C7H7Cl3NO3PS, C9H11Cl3NO4P, C4H11O2PS, and C5H2Cl3NO. Presumably, the degradation pathways involved are: enzymatic degradation, hydrolysis, dealkylation, desulfur hydrolysis, and dechlorination. The findings of this study demonstrate the efficacy of the goethite/S. oneidensis MR-1 complex system in the removal of chlorpyrifos from water. Consequently, this research contributes to the establishment of a theoretical framework for the microbial remediation of organophosphorus pesticides in aqueous environments.

2.
Microorganisms ; 12(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674698

RESUMO

Chromium (Cr) contamination, widely present in the environment, poses a significant threat to both ecology and human health. Microbial remediation technology has become a hot topic in the field of heavy metal remediation due to its advantages, such as environmental protection, low cost, and high efficiency. This paper focused on using various characterization and analysis methods to investigate the bioreduction effect and mechanism of microorganisms on Cr(VI) under various influencing factors. The main contents and conclusions were as follows: Shewanella oneidensis MR-1 was selected as the target strain for studying its reduction of Cr(VI) at different inoculation amounts, temperatures, pH values, time intervals, etc. The results indicated that S. oneidensis MR-1 exhibited an optimal reduction effect on Cr(VI) at pH 7 and a temperature of 35 °C. Additionally, electron shuttles (ESs), including humic acid (HA) and 9,10-antraquinone-2,6-disulfonate (AQDS), were introduced into the degradation system to improve the reduction efficiency of S. oneidensis MR-1. Upon adding goethite further, S. oneidensis MR-1 significantly enhanced its reducing ability by converting Fe(III) minerals to Fe(II) and reducing Cr(VI) to Cr(III) during electron transfer.

3.
Environ Sci Pollut Res Int ; 31(20): 30059-30071, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594560

RESUMO

In this study, a high-efficiency strontium-doped hydroxyapatite (Sr-HAP) adsorbent was synthesized by a sol-gel method for removing cobaltous ions (Co(II)) from water. The effects of adsorbent dose, initial solution pH, initial Co(II) concentration and temperature on the removal performance of Co(II) were investigated. Experimental results indicated that the optimum Sr-HAP dose was 0.30 g/50 mL solution, the Sr-HAP adsorbent could effectively remove Co(II) in a wide pH range of 3-8. Increasing temperature was conducive to the adsorption, and the maximum Co(II) adsorption capacity by Sr-HAP reached 48.467 mg/g at 45 °C. The adsorption of Co(II) followed the pseudo-second-order kinetic model, indicating that the Co(II) adsorption by Sr-HAP was attributed mainly to chemisorption. The isothermal adsorption results showed that at lower Co(II) equilibrium concentration, the Langmuir model fitted the data better than the Freundlich model but opposite at higher Co(II) equilibrium concentration. Therefore, the adsorption of Co(II) was a process from monolayer adsorption to multilayer adsorption with the increase of the Co(II) equilibrium concentration. The diffusion analysis of Co(II) to Sr-HAP indicated that the internal diffusion and surface adsorption were the rate-controlled steps of Co(II) adsorption. Thermodynamic study demonstrated that the Co(II) adsorption process was spontaneous and endothermic. The mechanism study revealed that in addition to chemisorption, Sr-HAP also removed Co(II) ions from water via ion exchange and surface complexation.


Assuntos
Cobalto , Durapatita , Estrôncio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cobalto/química , Estrôncio/química , Poluentes Químicos da Água/química , Durapatita/química , Purificação da Água/métodos , Cinética , Concentração de Íons de Hidrogênio , Íons , Água/química
4.
Water Res ; 255: 121472, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552492

RESUMO

The creation of large amounts of excess sludge and residual nitrogen are critical issues in wastewater biotreatment. This study introduced Fe(II) into an oligotrophic anaerobic reactor (OARFe) that was implemented to modify an anoxic-oxic process to motivate in-situ sludge reduction and enhance denitrification under an effective electron shuttle among organic matter, nitrogen, and Fe. The addition of 15 mg L-1 Fe(II) resulted in a sludge reduction efficiency reached 32.0% with a decreased effluent nitrate concentration of 33.3%. This was mostly attributed to the electron transfer from Fe(II) to organic matters and nitrogen species in OARFe. The participation of Fe(II) led to the upregulation of Geothrix and Terrimonas, which caused active organic matter hydrolysis and cell lysis to stimulate the release of extracellular polymeric substances (EPS) and substance transfer between each layer of EPS. The higher utilization of released bioavailable dissolved organic matter improved endogenous denitrification, which can be combined with iron autotrophic denitrification to realize multiple electron donor-based nitrogen removal pathways, resulting in an increased nitrate removal rate of 58.2% in the absence of external carbon sources. These functional bacteria associated with the transformation of nitrogen and carbon and cycling between ferrous and ferric ions were enriched in OARFe, which contributed to efficient electron transport occurred both inside and outside the cell and increased 2,3,5-triphenyltetrazolium chloride electronic transport system activity by 46.9%. This contributed to the potential operational costs of chemical addition and sludge disposal of Fe-AO being 1.9 times lower than those of conventional A2O processes. These results imply that the addition of ferrous ions to an oligotrophic anaerobic zone for wastewater treatment has the potential for low-cost pollution control.

5.
J Hazard Mater ; 451: 131140, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905907

RESUMO

Nanoparticles have been found in large-scale environmental media in recent years, causing toxic effects in various organisms and even humans through food chain transmission. The ecotoxicological impact of microplastics on specific organisms is currently receiving much attention. However, relatively little research to date has examined the mechanisms through which nanoplastic residue may exert an interference effect on floating macrophytes in constructed wetlands. In our study, the aquatic plant Eichhornia crassipes was subjected to 100 nm polystyrene nanoplastics at concentrations of 0.1, 1 and 10 mg L-1 after 28 days of exposure. E. crassipes can decrease the concentration of nanoplastics in water by 61.42∼90.81% through phytostabilization. The abiotic stress of nanoplastics on the phenotypic plasticity (morphological and photosynthetic properties and antioxidant systems as well as molecular metabolism) of E. crassipes was assessed. The presence of nanoplastics reduced the biomass (10.66%∼22.05%), and the functional organ (petiole) diameters of E. crassipes decreased by 7.38%. The photosynthetic efficiency was determined, showing that the photosynthetic systems of E. crassipes are very sensitive to stress by nanoplastics at a concentration of 10 mg L-1. Oxidative stress and imbalance of antioxidant systems in functional organs are associated with multiple pressure modes from nanoplastic concentrations. The catalase contents of roots increased by 151.19% in the 10 mg L-1 treatment groups compared with the control group. Moreover, 10 mg L-1 concentrations of the nanoplastic pollutant interfere with purine and lysine metabolism in the root system. The hypoxanthine content was reduced by 6.58∼8.32% under exposure to different concentrations of nanoplastics. In the pentose phosphate pathway, the phosphoric acid content was decreased by 32.70% at 10 mg L-1 PS-NPs. In the pentose phosphate pathway, the phosphoric acid content was decreased by 32.70% at 10 mg L-1 PS-NPs. Nanoplastics disturb the efficiency of water purification by floating macrophytes, which reduces the chemical oxygen demand (COD) removal efficiency (from 73% to 31.33%) due to various abiotic stresses. This study provided important information for further clarifying the impact of nanoplastics on the stress response of floating macrophytes.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/farmacologia , Plásticos , Antioxidantes/farmacologia , Poliestirenos/toxicidade , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
6.
Nanomaterials (Basel) ; 13(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678078

RESUMO

In this study, coupling electrokinetic (EK) with the permeable reactive barriers (PRB) of Fe/Mn/C-LDH composite was applied for the remediation of arsenic-contaminated soils. By using self-made Fe/Mn/C-LDH materials as PRB filler, the effects of pretreatment and polarization shielding on EK-PRB of Fe/Mn/C-LDH for remediation of arsenic contaminated soils were investigated. For the pretreatment, phosphoric acid, phosphoric acid and water washing, and phosphate were adopted to reduce the influence of iron in soil. The addition of phosphate could effectively reduce the soil leaching toxicity concentration. The removal rate of the soil pretreated with phosphoric acid or phosphoric acid and water washing was better than with phosphate pretreatment. For the polarization shielding, circulating electrolyte, electrolyte type, anion and cation membranes, and the exchange of cathode and anode were investigated. The electrolyte circulates from the cathode chamber to the anode chamber through the peristaltic pump to control the pH value of the electrolyte, and the highest arsenic toxicity removal rate in the soil reaches 97.36%. The variation of total arsenic residue in soil using anion and cation membranes is the most regular. The total arsenic residue gradually decreases from cathode to anode. Electrode exchange can neutralize H+ and OH- produced by electrolyte, reduce the accumulation of soil cathode area, shield the reduction of repair efficiency caused by resistance polarization, enhance current, and improve the removal rate of arsenic in soil.

7.
Huan Jing Ke Xue ; 43(11): 5214-5223, 2022 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-36437093

RESUMO

In this study, original mulberry-biochar (M-BC) and magnetic iron oxide/mulberry stem biochar (Fe-BC) materials were prepared and characterized using mulberry stems as the raw material. The effects of carbonized temperature of Fe-BC and M-BC on dissolved organic carbon (DOC) and arsenic(As) speciation in soil leaching solutions were studied using soil incubation experiments. The results showed that:① Fe-BC was mainly composed of Fe3O4 and was magnetic, and the main functional groups were a C=O double bond, O-H bond, C-O bond, and Fe-O bond. The point of zero charge values (pHzpc) of Fe-BC-400, Fe-BC-500, and Fe-BC-600 were 8.92, 8.74, and 9.19, respectively, and the specific surface areas of Fe-BC-400, Fe-BC-500, and Fe-BC-600 were 447.412, 482.697, and 525.708 m2·g-1, respectively. ② With the increase in the carbonization temperature of M-BC and Fe-BC, the ρ(DOC) of soil leaching solution decreased 11.6-315.6 mg·L-1 and 78-365.6 mg·L-1, respectively. The DOC concentration of soil leaching solution was negatively correlated with soil EC. On day 35 of the incubation experiments, compared with that in soil after incubation without biochar (control), the As concentration of the soil leaching solution with Fe-BC-600 decreased by 55.96%, and there was no significant correlation between the As concentration of the soil leaching solution and the DOC concentration of the soil. ③ The available As concentration on day 35 in soil after incubation with Fe-BC was lower than that of the control group; the available As concentration on day 35 in soil incubated with Fe-BC-600 was reduced by 39.21%. ④ The residue As concentration on day 35 in soil incubated with M-BC decreased by 17.76%-49.11%. The residue As content on day 35 in soil incubated with Fe-BC-600 increased by 80%. Fe-BC-600 was most beneficial to reduce the DOC concentration and the available As content in soil leaching solution and increased the residue As content, thus reducing the bioavailability of soil arsenic. Therefore, this study can provide a theoretical basis for magnetic iron oxide/biochar remediation in arsenic-contaminated soil.


Assuntos
Arsênio , Morus , Poluentes do Solo , Arsênio/análise , Matéria Orgânica Dissolvida , Poluentes do Solo/análise , Solo/química , Fenômenos Magnéticos
8.
Front Microbiol ; 13: 932940, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847107

RESUMO

Acquisition of stable nitritation and efficient anammox play a crucial role in partial nitritation (PN) combined with anammox for nitrogen removal from ammonium-rich wastewater. Due to the limitation of ammonia-oxidizing bacteria (AOB) enrichment and nitrite-oxidizing bacteria (NOB) control in traditional membrane biological reactor (MBR), it can result in a lower nitrite production rate (NPR) and unstable PN, eventually reducing the nitrogen removal rate (NRR) via PN-anammox. In this study, we developed a zeolite membrane biological reactor (ZMBR) to enhance the PN of iron oxide red wastewater (IORW), in which the biofilm derived from the zeolite surface can provide free ammonia (FA)-containing microenvironment for AOB enrichment and NOB inhibition. The results showed that ZMBR can tolerate a higher influent nitrogen loading rate (NLR) of 2.78 kg/(m3⋅day) in comparison to the traditional MBR [2.02 kg/(m3⋅day)] and the NPR in ZMBR and traditional MBR were 1.39 and 0.96 kg/(m3⋅day), respectively. The mass concentration ratio of NO 2 - -N/ NH 4 + -N ranged from 1.05 to 1.33 in ZMBR, suggesting a suitable condition for nitrogen removal via anammox. Subsequently, the domesticated granular sludge obtained from a paper-making wastewater treatment was used as the carrier of anammox bacteria to remove nitrogen. After 93 days of operation, the NRR was observed to be 2.33 kg/(m3⋅day) and high-throughput sequencing indicated that the relatively higher abundance (45.0%) of Candidatus Kuenenia stuttgartiensis was detected in the granular sludge of the bottom part of the reactor, which can produce more proteins and lipids, suggesting a good settleability. Overall, this study provides a high-efficient method to control PN and domesticate anammox for nitrogen removal from IORW.

9.
Front Microbiol ; 13: 924084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722343

RESUMO

The hydrogen-based membrane biofilm reactor (MBfR) has been widely applied in nitrate removal from wastewater, while the erratic fluctuation of treatment efficiency is in consequence of unstable operation parameters. In this study, hydrogen pressure, pH, and biofilm thickness were optimized as the key controlling parameters to operate MBfR. The results of 653.31 µm in biofilm thickness, 0.05 MPa in hydrogen pressure and pH in 7.78 suggesting high-efficiency NO 3 - - N removal and the NO 3 - - N removal flux was 1.15 g·m-2 d-1. 16S rRNA gene analysis revealed that Pseudomonas, Methyloversatilis, Thauera, Nitrospira, and Hydrogenophaga were the five most abundant bacterial genera in MBfRs after optimization. Moreover, significant increases of Pseudomonas relative abundances from 0.36 to 9.77% suggested that optimization could effectively remove nitrogen from MBfRs. Membrane pores and surfaces exhibited varying degrees of calcification during stable operation, as evinced by Ca2+ precipitation adhering to MBfR membrane surfaces based on scanning electron microscopy (SEM), atomic force microscopy (AFM) analyses. Scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) analyses also confirmed that the primary elemental composition of polyvinyl chloride (PVC) membrane surfaces after response surface methodology (RSM) optimization comprised Ca, O, C, P, and Fe. Further, X-ray diffraction (XRD) analyses indicated the formation of Ca5F(PO4)3 geometry during the stable operation phase.

10.
Environ Sci Pollut Res Int ; 29(53): 81063-81075, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35729392

RESUMO

In this study, a strontium-doped hydroxyapatite (Sr-HAP) was synthesized by the solgel method, which was used as adsorbent to remove lead ions (Pb2+) from water. The results showed that the adsorption capacities of the Sr-HAP were obviously higher than those of the HAP, the adsorption capacities of which for Pb2+ reached 651.175 mg/g. The proper increasement in the dosage of adsorbent was beneficial to the removal of Pb2+ by Sr-HAP. Meanwhile Sr-HAP had a wide applicable pH range for Pb2+. And the increasement in temperature could increase the adsorption capacity of Sr-HAP for Pb2+ to a certain extent. The Langmuir model was used to fit the isotherm adsorption process of Sr-HAP to Pb2+ in water. Compared with HAP, the specific surface area of Sr-HAP has increased by 11.1%, and the pore size distribution of Sr-HAP tended to be smaller and more uniform. Hence, Sr-HAP could be used as an ideal adsorbent to remove Pb2+ in wastewater.


Assuntos
Poluentes Químicos da Água , Água , Chumbo , Águas Residuárias , Durapatita , Estrôncio , Adsorção , Íons , Hidroxiapatitas , Concentração de Íons de Hidrogênio , Cinética
11.
Artigo em Inglês | MEDLINE | ID: mdl-35410068

RESUMO

Arsenic is highly toxic and carcinogenic. The aim of the present work is to develop a good remediation technique for arsenic-contaminated soils. Here, a novel remediation technique by coupling electrokinetics (EK) with the permeable reactive barriers (PRB) of Fe/Mn/C-LDH composite was applied for the remediation of arsenic-contaminated soils. The influences of electric field strength, PRB position, moisture content and PRB filler type on the removal rate of arsenic from the contaminated soils were studied. The Fe/Mn/C-LDH filler synthesized by using bamboo as a template retained the porous characteristics of the original bamboo, and the mass percentage of Fe and Mn elements was 37.85%. The setting of PRB of Fe/Mn/C-LDH placed in the middle was a feasible option, with the maximum and average soil leaching toxicity removal rates of 95.71% and 88.03%, respectively. When the electric field strength was 2 V/cm, both the arsenic removal rate and economic aspects were optimal. The maximum and average soil leaching toxicity removal rates were similar to 98.40% and 84.49% of 3 V/cm, respectively. Besides, the soil moisture content had negligible effect on the removal of arsenic but slight effect on leaching toxicity. The best leaching toxicity removal rate was achieved when the soil moisture content was 35%, neither higher nor lower moisture content in the range of 25-45% was conducive to the improvement of leaching toxicity removal rate. The results showed that the EK-PRB technique could effectively remove arsenic from the contaminated soils. Characterizations of Fe/Mn/C-LDH indicated that the electrostatic adsorption, ion exchange, and surface functional group complexation were the primary ways to remove arsenic.


Assuntos
Arsênio , Recuperação e Remediação Ambiental , Poluentes do Solo , Arsênio/análise , Cinética , Solo , Poluentes do Solo/análise
12.
Geochem Trans ; 22(1): 1, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34037871

RESUMO

A complete series of calcite-rhodochrosite solid solutions [(Ca1-xMnx)CO3] are prepared, and their dissolution processes in various water samples are experimentally investigated. The crystal morphologies of the solid solutions vary from blocky spherical crystal aggregates to smaller spheres with an increasing incorporation of Mn in the solids. Regarding dissolution in N2-degassed water, air-saturated water and CO2-saturated water at 25 °C, the aqueous Ca and Mn concentrations reach their highest values after 1240-2400 h, 6-12 h and < 1 h, respectively, and then decrease gradually to a steady state; additionally, the ion activity products (log_IAP) at the final steady state (≈ solubility products in log_Ksp) are estimated to be - 8.46 ± 0.06, - 8.44 ± 0.10 and - 8.59 ± 0.10 for calcite [CaCO3], respectively, and - 10.25 ± 0.08, - 10.26 ± 0.10 and - 10.28 ± 0.03, for rhodochrosite [MnCO3], respectively. As XMn increases, the log_IAP values decrease from - 8.44 ~ - 8.59 for calcite to - 10.25 ~ - 10.28 for rhodochrosite. The aqueous Mn concentrations increase with an increasing Mn/(Ca + Mn) molar ratio (XMn) of the (Ca1-xMnx)CO3 solid solutions, while the aqueous Ca concentrations show the highest values at XMn = 0.53-0.63. In the constructed Lippmann diagram of subregular (Ca1-xMnx)CO3 solid solutions, the solids dissolve incongruently, and the data points of the aqueous solutions move progressively up to the Lippmann solutus curve and then along the solutus curve or saturation curve of pure MnCO3 to the Mn-poor side. The microcrystalline cores of the spherical crystal aggregates are preferentially dissolved to form core hollows while simultaneously precipitating Mn-rich hexagonal prisms.

13.
Chemosphere ; 263: 128386, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297286

RESUMO

Beudantite and hidalgoite were synthesized and characterized to investigate their possible immobilization for arsenic and lead in acidic and oxidizing environments by a long-term dissolution. The synthetic beudantite [Pb0.35(H3O)0.40Fe3.09(AsO4)0.37(SO4)1.63(OH)6.00] was spherulitic pseudo-cubic crystals with nearly smooth surface. The synthetic hidalgoite [Pb0.72(H3O)2.71Al2.26(AsO4)0.93(SO4)1.07(OH)6.00] was well-formed pseudo-cubic, pseudo-cuboctahedral or pseudo-octahedral crystals. During the beudantite dissolution, the constituents were dissolved preferentially in the order of SO42- > AsO43- > Pb2+ > Fe3+ in the early 24 h and SO42- > AsO43- > Fe3+ > Pb2+ after 24 h; the dissolved concentrations exhibited a minimum of 0.0027-0.0030 mg/L Pb and 0.0248-0.0250 mg/L As. During the hidalgoite dissolution, the constituents were dissolved preferentially in the order of Pb2+ > SO42- > AsO43- > Al3+ at initial pH < 4 or AsO43-,SO42- > Al3+ > Pb2+ at initial pH > 4; the dissolved concentrations showed a minimum of 0.0055-0.0061 mg/L Pb and 0.0750-0.0810 mg/L As. From the data of the dissolution at initial pH 2 and 25 °C for 270-330 d, the ion-activity products [logˍIAP] were estimated to be -94.18 ± 0.04 for the beudantite and -73.82 ± 0.11 for the hidalgoite, respectively. The concentrations of Pb and As released in the beudantite dissolution were always lower than in the hidalgoite dissolution and arsenate appeared to be much more soluble than Pb. Beudantite was more effective for the immobilization of As and Pb than hidalgoite.


Assuntos
Arsênio , Concentração de Íons de Hidrogênio , Chumbo , Solubilidade
14.
Artigo em Inglês | MEDLINE | ID: mdl-33327414

RESUMO

A novel adsorbent Mn-Fe layered double hydroxides intercalated with ethylenediaminete-traacetic (EDTA@MF-LDHs) was synthesized by a low saturation coprecipitation method. The behavior and mechanism of As(III) removed by EDTA@MF-LDHs were investigated in detail in comparison with the carbonate intercalated Mn-Fe layered double hydroxides (CO3@MF-LDHs). The results showed that EDTA@MF-LDHs had a higher removal efficiency for As(III) than As(V) with a broader pH range than CO3@MF-LDH. The large adsorption capacity of EDTA@MF-LDHs is related to its large interlayer spacing and the high affinity of its surface hydroxyl groups. The maximum adsorption capacity for As(III) is 66.76 mg/g at pH 7. The FT-IR and XPS characterization indicated that the removal mechanism of the As(III) on EDTA@MF-LDHs include surface complexation, redox, and ion exchange.


Assuntos
Ânions , Arsênio , Técnicas de Química Analítica , Ácido Edético , Ferro , Magnésio , Ânions/síntese química , Arsênio/isolamento & purificação , Técnicas de Química Analítica/métodos , Ácido Edético/química , Concentração de Íons de Hidrogênio , Hidróxidos/química , Ferro/química , Magnésio/química , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Huan Jing Ke Xue ; 41(12): 5600-5608, 2020 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-33374077

RESUMO

Red soil from Guangxi, China was selected as the background soil, and a porous biomorphic genetic composite of α-Fe2O3/Fe3O4/C comprising a bamboo template (PBGC-Fe/C) was used as a passivator to remediate As(Ⅴ) contaminated soils. The performance of PBGC-Fe/C was characterized by Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). The results showed that PBGC-Fe/C could improve the passivation effect of As(Ⅴ) from the contaminated soils compared with a single passivation material. Under the conditions of a 5% dose addition, 25% water content, and particle size of 100 mesh, the stability rates of PBGC-Fe/C on As(Ⅴ) contaminated soils with different concentrations of 500 mg·kg-1 and 1000 mg·kg-1 could reach 80.95% and 73.49%, respectively. The porous biomorphic genetic composite of bamboo charcoal provided a large number of adsorption sites for As(Ⅴ), and the acidity of the soil was favorable for the remediation of As(Ⅴ) via passivation. Moreover, PBGC-Fe/C could not only adsorb and fix As(Ⅴ), but also promoted the stabilization of As species. Chemical complexation and ion exchange played major roles in this passivation process.

16.
Huan Jing Ke Xue ; 41(3): 1498-1504, 2020 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608654

RESUMO

The specific characteristics and mechanism of passivation of Pb in soil were studied using HAP/C composite (PBGC-HAP/C) as passivation, and using proportion of PBGC-HAP/C, particle size and type of passivator, soil moisture content, soil pH value of Pb, and particle size of the material as influencing factors. The results showed that with an increase in dosage of the passivator and passivation time, the passivation effect increases gradually. Reducing the particle size of the passivator is beneficial to improving the passivation effect. pH has a greater impact on passivation, with the passivation effect obviously rising with increased pH, and the passivation rate in an alkaline environment can reach above 99%. An increase in water content is beneficial to the improvement of the passivation effect, but the contribution is not significant. Through comparative analysis of the XPS, XRD, and FT-IR of materials before and after passivation, the results indicated that the passivation of PBGC-HAP/C to Pb is mainly through direct and indirect effects. Direct effects include physical adsorption, chemical complexation, electrostatic interaction, ion exchange, and precipitation; the indirect effect is mainly enhanced by increasing the pH value of the organic matter.

17.
Artigo em Inglês | MEDLINE | ID: mdl-32471142

RESUMO

As an innovative and economical material, hydroxyapatite does little harm to the environment. In this study, a magnesium hydroxyapatite (Mg-HAP) adsorbent was prepared by doping magnesium. Magnesium doping can increase the hydroxyl groups on the surface of Mg-HAP to form more adsorption sites and improve the removal effect of the heavy metal Zn(II) in water. This study was implemented to survey the effect of different sorption elements, including the liquor initial pH, initial concentration, dose of adsorbents, and other factors, on the adsorption effect. The outcomes show that the sorption effect was best at the time that the liquor was weakly acidic (pH = 6); At a pH of 6, the temperature of 25 °C when the optimal dosage of adsorbent is 0.25 g, the maximum adsorption amount is 62.11 mg/g. Through data fitting, the adsorption process can be accurately described as a pseudo-second-order dynamics model and the Langmuir isotherm equation. According to the thermodynamic analysis, the sorption of zinc ions by Mg-HAP belongs to the process of spontaneous endothermic and entropy increase, and the increase of temperature was conducive to adsorption. Material characterization and analysis indicate that surface complexation and dissolution-precipitation was the main mechanism for adsorption of Zn(II).


Assuntos
Durapatita/química , Magnésio/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água , Zinco/isolamento & purificação , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Solubilidade , Termodinâmica , Água
18.
Huan Jing Ke Xue ; 40(9): 4081-4090, 2019 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854871

RESUMO

A novel magnesium-calcium hydroxyapatite adsorbent was prepared by the Sol-gel method with different proportions of Mg/(Ca+Mg) using Mg2+ as doped ions, and the removal characteristics and process mechanism of Pb2+ on the magnesium-calcium hydroxyapatite in an aqueous solutions were studied. The results show that the surface of the adsorbent is composed mainly of a hydroxyphosphonite compound[Pb10(PO4)6(OH)2], The morphological characteristics of the magnesium-calcium hydroxyapatite adsorbent surface was investigated as crystal structure changes from short rods to needle structures according to scanning electron microscopy (SEM). Testing at a temperature of 25℃ and pH of 5 showed that the adsorption of Pb2+ by magnesium-calcium hydroxyapatite reached equilibrium within 720 min. The adsorption capacity was determined to be 813.17 mg·g-1 at a dosage of 0.6 g·L-1. The thermodynamic test results of ΔGθ<0, ΔSθ>0, and ΔHθ>0 indicated that the adsorption process of Pb2+ by magnesium-calcium hydroxyapatite is a spontaneous process with endothermic reaction and entropy increments, and higher temperatures were considered be favorable for adsorption at a range of 25-45℃. The adsorption could be effectively described by a pseudo-second-order kinetic equation. The equilibrium data were found to follow the Langmuir adsorption model. Material characterization and adsorption tests showed that surface complexation and dissolution-precipitation were the main mechanisms for the removal of Pb2+ by magnesium-calcium hydroxyapatite in an aqueous solution.

19.
Sci Total Environ ; 669: 754-766, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30893631

RESUMO

A series of the arsenate-substituted natroalunite solid solutions were synthesized by hydrothermal precipitation at 200 °C and pH of 4 and characterized to investigate the AsO4 substitution for SO4 in natroalunite as the base of a possible immobilization method for arsenic. The AsO4 substitution in natroalunite increased when the [AsO4/(AsO4 + SO4)]aq molar ratios of the initial aqueous solutions increased and the maximum substitution reached ~67% molar for the [AsO4/(AsO4 + SO4)]aq = 0.26. The XRD analysis confirmed that all hydrothermal synthetical solids for the [AsO4/(AsO4 + SO4)]aq ≤ 0.26 were characteristic of natroalunite-type phases. The AsO4 substitution in the natroalunites increased the c lattice parameters, owing to the difference between the SO distance and the AsO distance in the crystal structures. For the [AsO4/(AsO4 + SO4)]aq = 0.28 at 200 °C and pH of 4, a mixture of natroalunite, amorphous arsenate phase and Na2SO4 was formed. The crystals of the arsenate-substituted natroalunites were regular ditrigonal scalenohedron (pseudo-octahedron). The Raman spectra were characterized by two bands centered upon 899-917 cm-1 and 981-997 cm-1, which represented the symmetric stretching vibration v1(AsO4) and the antisymmetric stretching vibration v3(AsO4), respectively. The infrared bands around 868-897 cm-1 were assigned to the symmetric stretching vibration v1(AsO4). The thermal decomposition of the arsenate-substituted natroalunites showed three separated endothermic steps, namely the loss of H3O+, the loss of OH- and the loss of SO3 + (As2O3 + O2). The solubility products [Ksp] and the Gibbs free energies of formation [ΔGfo] for the arsenate-substituted natroalunites decreased from 10-81.21 to 10-109.16 and from -4714.49 kJ/mol to -5352.95 kJ/mol with the increase of the AsO4 substitution from 0% to 67%, respectively.

20.
Sci Total Environ ; 657: 938-944, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30677959

RESUMO

We studied the effect of different doses (0.5%, 2% and 5% (w/w)) of ammonium thiosulfate on mercury (Hg) speciation fractionation following its addition to the soil, as well as its accumulation by oilseed rape (Brassica napus L.), corn (Zea mays L.), and sweet potato (Ipomoea batatas L.), and compared them to a non-treated control in a historically polluted soil. The oilseed rape, corn, and sweet potato were planted consecutively in the same soils on days 30, 191, and 276, respectively after the addition of thiosulfate to the soil. The key results showed that bioavailable Hg contents in the rhizosphere soils ranged from 0.18 to 2.54 µg kg-1, 0.28 to 2.77 µg kg-1, and 0.24 to 2.22 µg kg-1, respectively, for the 0.5%, 2% and 5% thiosulfate treatments, which were close to the control soil (0.25 to 1.98 µg kg-1). The Hg L3-edge X-ray absorption near edge structure (XANES) results showed a tendency of the Hg speciation to transform from the Hg(SR)2 (initial soil, 56%; day-191 soil, 43%; day-276 soil, 46%, and day-356 soil, 16%) to nano particulated HgS (initial soil, 26%; day-191 soil, 42%; day-276 soil, 42%, and day-356 soil, 73%) with time in the soil treated with a 5% dose of thiosulfate. The Hg contents in the tissues of the crops, except for oilseed rape, were slightly affected by the addition of thiosulfate to the soil at all dosages, compared to the control. The addition of thiosulfate did not induce the movement of bioavailable Hg to the lower layer of the soil profile. We conclude a promotion of Hg immobilization by thiosulfate in the soil for over one year, offering a promising method for in-situ Hg remediation at Hg mining regions in China.


Assuntos
Produtos Agrícolas/efeitos dos fármacos , Recuperação e Remediação Ambiental/métodos , Mercúrio/química , Poluentes do Solo/química , Tiossulfatos/química , Disponibilidade Biológica , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , China , Produtos Agrícolas/química , Ipomoea batatas/efeitos dos fármacos , Ipomoea batatas/metabolismo , Mercúrio/análise , Mercúrio/farmacocinética , Mineração , Rizosfera , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética , Espectroscopia por Absorção de Raios X , Zea mays/efeitos dos fármacos , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...