Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(5): 8325-8334, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859947

RESUMO

Vibrational spectroscopy is significant for identifying chemical specification. Here, the spectral band frequencies corresponding to the same molecular vibration in sum frequency generation (SFG) and difference frequency generation (DFG) spectra present delay-dependent deviation. Through numerical analysis of time resolved SFG and DFG spectra with a frequency marker in the incident IR pulse, the frequency ambiguity was not caused by any structure and dynamic variation on the surface, but from the dispersion in the incident visible pulse. Our results provide a helpful method to correct the vibrational frequency deviation and improve the assignment accuracy for SFG and DFG spectroscopies.

2.
Ecotoxicol Environ Saf ; 220: 112385, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082241

RESUMO

Sulfometuron methyl (SM) is a widely used herbicide and thus leading to accumulation in the environment. The toxicity assessments of SM in model organisms are currently rare. In the present study, zebrafish were utilized for evaluating the detrimental effects of SM in aquatic vertebrates. Zebrafish embryos were exposed to 0, 10, 20, and 40 mg/L SM from 5.5 to 72 h post-fertilization (hpf), respectively. Consequently, SM exposure resulted in increasing the mortality rate and reducing hatching rate in larval zebrafish at 10, 20, and 40 mg/L SM-treated groups. The reduced numbers of immune cells (neutrophils and macrophages) were observed after SM exposure by a dose-dependent manner. The inflammatory responses (TLR4, MYD88, IL-1ß, IL-6, IL-8, IFN-γ, IL-10, and TGF-ß) were measured to estimate immune responses. Anti-inflammatory factors (IL-10 and TGF-ß) were down-regulated in all the treated groups and significantly altered at 40 mg/L exposure group. Additionally, behavioral tests suggested that SM treatment significantly increased the total distance, average speed, and maximum acceleration of larval zebrafish during light-dark transition and subsequently enzymology test displayed the same trend to locomotor behaviors. The content significantly increased in oxidative stress, as reflected in ROS level in all the treated groups. The numbers of cell apoptosis were significantly increased at 20, and 40 mg/L and the highest concentration group induced the substantial increment (P < 0.001) of apoptosis-related genes including p53, Bax/Bcl-2, caspase-9, and caspase-3. In summary, our results demonstrated that exposure to SM caused toxicity of development, immune system, locomotor behavior, oxidative stress, and cell apoptosis at the early developmental stages of zebrafish.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Herbicidas/toxicidade , Compostos de Sulfonilureia/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Apoptose/efeitos dos fármacos , Catalase/metabolismo , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Larva/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...