Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.562
Filtrar
1.
ACS Chem Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954741

RESUMO

Hepatitis C virus (HCV) is a positive-stranded RNA virus that mainly causes chronic hepatitis, cirrhosis and hepatocellular carcinoma. Recently we confirmed m5C modifications within NS5A gene of HCV RNA genome. However, the roles of the m5C modification and its interaction with host proteins in regulating HCV's life cycle, remain unexplored. Here, we demonstrate that HCV infection enhances the expression of the host m5C reader YBX1 through the transcription factor MAX. YBX1 acts as an m5C reader, recognizing the m5C-modified NS5A C7525 site in the HCV RNA genome and significantly enhancing HCV RNA stability. This m5C-modification is also required for YBX1 colocalization with lipid droplets and HCV Core protein. Moreover, YBX1 facilitates HCV RNA replication, as well as viral assembly/budding. The tryptophan residue at position 65 (W65) of YBX1 is critical for these functions. Knockout of YBX1 or the application of YBX1 inhibitor SU056 suppresses HCV RNA replication and viral protein translation. To our knowledge, this is the first report demonstrating that the interaction between host m5C reader YBX1 and HCV RNA m5C methylation facilitates viral replication. Therefore, hepatic-YBX1 knockdown holds promise as a potential host-directed strategy for HCV therapy.

2.
Food Chem ; 457: 140067, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38959681

RESUMO

Round green tea (RGT) presents unique properties and is widely distributed in China, and during processing, it undergoes dynamic changes in non-volatile metabolites (NVMs), which are poorly understood. Utilizing UHPLC-Q-Exactive/MS analysis, this study comprehensively characterized 216 NVMs during RGT processing and identified fixation and pan-frying as key processes influencing NVMs. Additionally, 23 key differential NVMs were screened, with amino acid and flavonoid metabolism highlighted as key metabolic pathways for RGT taste and color quality. The impact of pan-frying degree on shape, color, and taste was also explored. Moderate pan-frying led to optimal results, including a tight and round shape, green and bright color, mellow and umami taste, and reduced astringent and bitter taste NVMs, including epigallocatechin gallate, procyanidin B2, myricetin 3-O-galactoside, quinic acid, strictinin, phenylalanine, and theobromine. This study addresses the NVM research gap in RGT processing, thus providing a technical foundation for the precision-oriented processing of high-quality tea.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38950354

RESUMO

PURPOSE: To elucidate the underlying motivations, experiential dimensions, and cognitive perceptions in adolescents with depression and non-suicidal self-injury (NSSI). METHOD: A descriptive qualitative design was used. Participants were 18 Chinese adolescents with depression and NSSI. Conventional content analysis was used for data analysis. RESULTS: Three primary themes and 11 subthemes were identified: Triggers of NSSI (personal, family, school, and social factors); Experiencing Emotional Complexity in NSSI Implementation (mitigating psychological distress, awakening a sense of existential life, generating secondary negative emotions, stimulating reflections on life and death); and Perceptions and Understandings of NSSI are Diverse (NSSI as a form of seeking validation or approval, an addictive behavior, a means to attain a sense of control, and unacceptable behavior). CONCLUSION: Although nursing staff should provide comprehensive treatment and psychological support, efforts should also be made to strengthen caregiving skills of family members, thereby promoting overall physical and mental health of adolescents. [Journal of Psychosocial Nursing and Mental Health Services, xx(x), xx-xx.].

4.
J Neuroinflammation ; 21(1): 166, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956653

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) and obstructive sleep apnea (OSA) are mutual risk factors, with both conditions inducing cognitive impairment and anxiety. However, whether OSA exacerbates cognitive impairment and anxiety in patients with T2DM remains unclear. Moreover, TREM2 upregulation has been suggested to play a protective role in attenuating microglia activation and improving synaptic function in T2DM mice. The aim of this study was to explore the regulatory mechanisms of TREM2 and the cognitive and anxiety-like behavioral changes in mice with OSA combined with T2DM. METHODS: A T2DM with OSA model was developed by treating mice with a 60% kcal high-fat diet (HFD) combined with intermittent hypoxia (IH). Spatial learning memory capacity and anxiety in mice were investigated. Neuronal damage in the brain was determined by the quantity of synapses density, the number and morphology of brain microglia, and pro-inflammatory factors. For mechanism exploration, an in vitro model of T2DM combined with OSA was generated by co-treating microglia with high glucose (HG) and IH. Regulation of TREM2 on IFNAR1-STAT1 pathway was determined by RNA sequencing and qRT-PCR. RESULTS: Our results showed that HFD mice exhibited significant cognitive dysfunction and anxiety-like behavior, accompanied by significant synaptic loss. Furthermore, significant activation of brain microglia and enhanced microglial phagocytosis of synapses were observed. Moreover, IH was found to significantly aggravate anxiety in the HFD mice. The mechanism of HG treatment may potentially involve the promotion of TREM2 upregulation, which in turn attenuates the proinflammatory microglia by inhibiting the IFNAR1-STAT1 pathway. Conversely, a significant reduction in TREM2 in IH-co-treated HFD mice and HG-treated microglia resulted in the further activation of the IFNAR1-STAT1 pathway and consequently increased proinflammatory microglial activation. CONCLUSIONS: HFD upregulated the IFNAR1-STAT1 pathway and induced proinflammatory microglia, leading to synaptic damage and causing anxiety and cognitive deficits. The upregulated TREM2 inT2DM mice brain exerted a negative regulation of the IFNAR1-STAT1 pathway. Mice with T2DM combined with OSA exacerbated anxiety via the downregulation of TREM2, causing heightened IFNAR1-STAT1 pathway activation and consequently increasing proinflammatory microglia.


Assuntos
Ansiedade , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Hipóxia , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta , Receptores Imunológicos , Transdução de Sinais , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Ansiedade/etiologia , Ansiedade/metabolismo , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Hipóxia/metabolismo , Hipóxia/complicações , Masculino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/psicologia , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Microglia/metabolismo , Fator de Transcrição STAT1/metabolismo , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/psicologia
5.
Nat Commun ; 15(1): 5624, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965231

RESUMO

Graphene has been extensively utilized as an electrode material for nonaqueous electrochemical capacitors. However, a comprehensive understanding of the charging mechanism and ion arrangement at the graphene/electrolyte interface remain elusive. Herein, a gap-enhanced Raman spectroscopic strategy is designed to characterize the dynamic interfacial process of graphene with an adjustable number of layers, which is based on synergistic enhancement of localized surface plasmons from shell-isolated nanoparticles and a metal substrate. By employing such a strategy combined with complementary characterization techniques, we study the potential-dependent configuration of adsorbed ions and capacitance curves for graphene based on the number of layers. As the number of layers increases, the properties of graphene transform from a metalloid nature to graphite-like behavior. The charging mechanism shifts from co-ion desorption in single-layer graphene to ion exchange domination in few-layer graphene. The increase in area specific capacitance from 64 to 145 µF cm-2 is attributed to the influence on ion packing, thereby impacting the electrochemical performance. Furthermore, the potential-dependent coordination structure of lithium bis(fluorosulfonyl) imide in tetraglyme ([Li(G4)][FSI]) at graphene/electrolyte interface is revealed. This work adds to the understanding of graphene interfaces with distinct properties, offering insights for optimization of electrochemical capacitors.

6.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928029

RESUMO

Metabolic engineering enables oilseed crops to be more competitive by having more attractive properties for oleochemical industrial applications. The aim of this study was to increase the erucic acid level and to produce wax ester (WE) in seed oil by genetic transformation to enhance the industrial applications of B. carinata. Six transgenic lines for high erucic acid and fifteen transgenic lines for wax esters were obtained. The integration of the target genes for high erucic acid (BnFAE1 and LdPLAAT) and for WEs (ScWS and ScFAR) in the genome of B. carinata cv. 'Derash' was confirmed by PCR analysis. The qRT-PCR results showed overexpression of BnFAE1 and LdPLAAT and downregulation of RNAi-BcFAD2 in the seeds of the transgenic lines. The fatty acid profile and WE content and profile in the seed oil of the transgenic lines and wild type grown in biotron were analyzed using gas chromatography and nanoelectrospray coupled with tandem mass spectrometry. A significant increase in erucic acid was observed in some transgenic lines ranging from 19% to 29% in relation to the wild type, with a level of erucic acid reaching up to 52.7%. Likewise, the transgenic lines harboring ScFAR and ScWS genes produced up to 25% WE content, and the most abundant WE species were 22:1/20:1 and 22:1/22:1. This study demonstrated that metabolic engineering is an effective biotechnological approach for developing B. carinata into an industrial crop.


Assuntos
Brassica , Ácidos Erúcicos , Ésteres , Engenharia Metabólica , Plantas Geneticamente Modificadas , Sementes , Ceras , Ácidos Erúcicos/metabolismo , Engenharia Metabólica/métodos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ceras/metabolismo , Ésteres/metabolismo , Sementes/genética , Sementes/metabolismo , Brassica/genética , Brassica/metabolismo , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Int J Biol Macromol ; 274(Pt 1): 133322, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908646

RESUMO

CD47, a cell surface protein known for inhibiting phagocytosis, plays a critical role in the tumor microenvironment (TME) and is a potential biomarker for cancer. However, directly applying αCD47, a hydrophilic macromolecular antibody that targets CD47, in vivo for cancer detection can have adverse effects on normal cells, cause systemic toxicities, and lead to resistance against anti-cancer therapies. In this study, we developed a novel complex incorporating aluminum-based metal-organic frameworks (Al-MOF) loaded with indocyanine green (ICG), αCD47, and resiquimod (R848), a hydrophobic small molecule Toll-like receptor 7/8 (TLR7/8) agonist. Upon activation with an infrared 808 nm laser, the nanocomposites exhibited photothermal effects that triggered the release of the loaded reagents, induced ROS production, and induced changes in the TME. This led to the polarization of immune-suppressive M2 macrophages towards an immune-stimulatory M1 phenotype, promoted dendritic cell (DC) maturation, and enabled mature DCs to facilitate antigen presentation, T-cell activation, and critical roles in tumor immunity. Furthermore, in vivo imaging successfully detected the specific binding of αCD47 with CD47 on tumor cells. Overall, the complex composed of αCD47 antibody and toll-like receptor agonist showed promising efficacy in both tumor diagnosis and therapy, providing a potential strategy for detecting early lung cancer and modulating the tumor microenvironment for improved treatment outcomes.

8.
Sci Rep ; 14(1): 14438, 2024 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910141

RESUMO

Blood-brain barrier disruption is a critical pathological event in the progression of ischemic stroke (IS). Most studies regarding the therapeutic potential of neferine (Nef) on IS have focused on neuroprotective effect. However, whether Nef attenuates BBB disruption during IS is unclear. We here used mice underwent transient middle cerebral artery occlusion (tMCAO) in vivo and bEnd.3 cells exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) injury in vitro to simulate cerebral ischemia. We showed that Nef reduced neurobehavioral dysfunction and protected brain microvascular endothelial cells and BBB integrity. Molecular docking, short interfering (Si) RNA and plasmid transfection results showed us that PGC-1α was the most binding affinity of biological activity protein for Nef. And verification experiments were showed that Nef upregulated PGC-1α expression to reduce mitochondrial oxidative stress and promote TJ proteins expression, further improves the integrity of BBB in mice. Intriguingly, our study showed that neferine is a natural PGC-1α activator and illustrated the mechanism of specific binding site. Furthermore, we have demonstrated Nef reduced mitochondria oxidative damage and ameliorates endothelial inflammation by inhibiting pyroptosis to improve BBB permeability through triggering a cascade reaction of PGC-1α via regulation of PGC-1α/NLRP3/GSDMD signaling pathway to maintain the integrity of BBB in ischemia/reperfusion injury.


Assuntos
Benzilisoquinolinas , Barreira Hematoencefálica , Células Endoteliais , AVC Isquêmico , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Piroptose , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia
9.
ACS Appl Mater Interfaces ; 16(25): 32027-32044, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38867426

RESUMO

Atherosclerotic plaques exhibit high cholesterol deposition and oxidative stress resulting from high reactive oxygen species (ROS). These are the major components in plaques and the main pro-inflammatory factor. Therefore, it is crucial to develop an effective therapeutic strategy that can simultaneously address the multiple pro-inflammatory factors via removing cholesterol and inhibiting the overaccumulated ROS. In this study, we constructed macrophage membrane-encapsulated biomimetic nanoparticles (MM@DA-pCD@MTX), which not only alleviate cholesterol deposition at the plaque lesion via reverse cholesterol transport but also scavenge the overaccumulated ROS. ß-Cyclodextrin (ß-CD) and the loaded methotrexate (MTX) act synergistically to induce cholesterol efflux for inhibiting the formation of foam cells. Among them, MTX up-regulated the expression of ABCA1, CYP27A1, and SR-B1. ß-CD increased the solubility of cholesterol crystals. In addition, the ROS scavenging property of dopamine (DA) was perfectly preserved in MM@DA-pCD@MTX, which could scavenge the overaccumulated ROS to alleviate the oxidative stress at the plaque lesion. Last but not least, MM-functionalized "homing" targeting of atherosclerotic plaques not only enables the targeted drug delivery but also prolongs in vivo circulation time and drug half-life. In summary, MM@DA-pCD@MTX emerges as a potent, multifunctional therapeutic platform for AS treatment, offering a high degree of biosafety and efficacy in addressing the complex pathophysiology of atherosclerosis.


Assuntos
Aterosclerose , Materiais Biomiméticos , Colesterol , Dopamina , Macrófagos , Metotrexato , Nanopartículas , Dopamina/química , Dopamina/farmacologia , Nanopartículas/química , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Camundongos , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Metotrexato/química , Metotrexato/farmacologia , Colesterol/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Células RAW 264.7 , Estresse Oxidativo/efeitos dos fármacos , Portadores de Fármacos/química , beta-Ciclodextrinas
10.
Microbiol Resour Announc ; : e0028124, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916302

RESUMO

In this report, we present the complete genome sequences of two Bacillus anthracis strains utilized as veterinary vaccines in China. The sequencing was conducted using a hybrid assembly methodology that combined Illumina short reads and PacBio long reads. This approach provides a high-quality representative sequence for the strains mentioned above.

11.
J Neural Eng ; 21(4)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38866001

RESUMO

Objective.Electroencephalogram (EEG) signals are promising biometrics owning to their invisibility, adapting to the application scenarios with high-security requirements. However, It is challenging to explore EEG identity features without the interference of device and state differences of the subject across sessions. Existing methods treat training sessions as a single domain, affected by the different data distribution among sessions. Although most multi-source unsupervised domain adaptation (MUDA) methods bridge the domain gap between multiple source and target domains individually, relationships among the domain-invariant features of each distribution alignment are neglected.Approach.In this paper, we propose a MUDA method, Tensorized Spatial-Frequency Attention Network (TSFAN), to assist the performance of the target domain for EEG-based biometric recognition. Specifically, significant relationships of domain-invariant features are modeled via a tensorized attention mechanism. It jointly incorporates appropriate common spatial-frequency representations of pairwise source and target but also cross-source domains, without the effect of distribution discrepancy among source domains. Additionally, considering the curse of dimensionality, our TSFAN is approximately represented in Tucker format. Benefiting the low-rank Tucker Network, the TSFAN can scale linearly in the number of domains, providing us the great flexibility to extend TSFAN to the case associated with an arbitrary number of sessions.Main results.Extensive experiments on the representative benchmarks demonstrate the effectiveness of TSFAN in EEG-based biometric recognition, outperforming state-of-the-art approaches, as verified by cross-session validation.Significance.The proposed TSFAN aims to investigate the presence of consistent EEG identity features across sessions. It is achieved by utilizing a novel tensorized attention mechanism that collaborates intra-source transferable information with inter-source interactions, while remaining unaffected by domain shifts in multiple source domains. Furthermore, the electrode selection shows that EEG-based identity features across sessions are distributed across brain regions, and 20 electrodes based on 10-20 standard system are able to extract stable identity information.


Assuntos
Identificação Biométrica , Eletroencefalografia , Eletroencefalografia/métodos , Humanos , Identificação Biométrica/métodos , Masculino , Atenção/fisiologia , Feminino , Redes Neurais de Computação , Adulto , Adulto Jovem
12.
Clin Immunol ; 265: 110293, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936523

RESUMO

Patients with caspase-associated recruitment domain-9 (CARD9) deficiency are more likely to develop invasive fungal disease that affect CNS. However, the understanding of how Candida invades and persists in CNS is still limited. We here reported a 24-year-old woman who were previously immunocompetent and diagnosed with CNS candidiasis. A novel autosomal recessive homozygous CARD9 mutation (c.184 + 5G > T) from this patient was identified using whole genomic sequencing. Furthermore, we extensively characterized the impact of this CARD9 mutation on the host immune response in monocytes, neutrophils and CD4 + T cells, using single cell sequencing and in vitro experiments. Decreased pro-inflammatory cytokine productions of CD14 + monocyte, impaired Th17 cell differentiation, and defective neutrophil accumulation in CNS were found in this patient. In conclusion, this study proposed a novel mechanism of CNS candidiasis development. Patients with CNS candidiasis in absence of known immunodeficiencies should be analyzed for CARD9 gene mutation as the cause of invasive fungal infection predisposition.

13.
Exp Neurol ; 379: 114866, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876194

RESUMO

Spinal cord injury (SCI) represents a highly debilitating trauma to the central nervous system, currently lacking effective therapeutic strategies. The cascade of inflammatory responses induced by secondary damage following SCI disrupts the local immune environment at the injury site, ultimately exacerbating functional impairments post-injury. With advancing research on the gut-brain axis, evidence suggests that dysbiosis of the gut microbiota post-SCI amplifies inflammatory responses and plays a pivotal role in modulating post-injury immune-inflammatory responses. In this review article, we will explore the significant role of the gut microbiota and its metabolic products in modulating the responses of central and peripheral immune cells post-SCI, as well as their potential as therapeutic interventions for SCI treatment.

14.
Int J Biol Macromol ; 273(Pt 1): 133062, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38862051

RESUMO

Chronic bacterial infections, excessive inflammation, and oxidative stress significantly hinder diabetic wound healing by prolonging the inflammatory phase and complicating the healing process. In this study, phenylboronic acid functionalized dextran (PODP) was developed to encapsulate curcumin, referred to as PODP@Cur. Experimental results indicate that PODP significantly improves the water solubility of curcumin and exhibits synergistic biological activity both in vitro and in vivo. PODP@Cur is capable of accelerating drug release under the pathological microenvironment with ROS accumulation. Furthermore, phenylboronic acid (PBA) has demonstrated potential for targeted bacterial drug delivery, enhancing antibacterial efficacy and trapping free LPS/PGN from dead bacteria to reduce undesirable inflammation. In a diabetic mouse model, PODP@Cur exhibits an excellent antibacterial, anti-inflammatory and antioxidant activities to ultimately promote the efficient and safe wound healing. Due to the specific interaction between PBA and LPS, PODP@Cur could enhance antibacterial activity against bacteria, reduce toxic side effects on normal cells, and alleviate the LPS-mediated pro-inflammatory pathological microenvironment. Therefore, PODP@Cur is capable of being exploited as an efficient and safe candidate for promoting the bacteria-infected diabetic wound healing.


Assuntos
Antibacterianos , Ácidos Borônicos , Curcumina , Dextranos , Diabetes Mellitus Experimental , Cicatrização , Curcumina/farmacologia , Curcumina/química , Animais , Cicatrização/efeitos dos fármacos , Dextranos/química , Camundongos , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Diabetes Mellitus Experimental/tratamento farmacológico , Nanopartículas/química , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Células RAW 264.7 , Masculino , Antioxidantes/farmacologia , Antioxidantes/química , Infecções Bacterianas/tratamento farmacológico
15.
J Integr Med ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38849220

RESUMO

OBJECTIVE: Studies have demonstrated that cycloastragenol induces antitumor effects in prostate, colorectal and gastric cancers; however, its efficacy for inhibiting the proliferation of lung cancer cells is largely unexplored. This study explores the efficacy of cycloastragenol for inhibiting non-small cell lung cancer (NSCLC) and elucidates the underlying molecular mechanisms. METHODS: The effects of cycloastragenol on lung cancer cell proliferation were assessed using an adenosine triphosphate monitoring system based on firefly luciferase and clonogenic formation assays. Cycloastragenol-induced apoptosis in lung cancer cells was evaluated using dual staining flow cytometry with an annexin V-fluorescein isothiocyanate/propidium iodide kit. To elucidate the role of cycloastragenol in the induction of apoptosis, apoptosis-related proteins were examined using Western blots. Immunofluorescence and Western blotting were used to determine whether cycloastragenol could induce autophagy in lung cancer cells. Genetic techniques, including small interfering RNA technology, were used to investigate the underlying mechanisms. The effects against lung cancer and biosafety of cycloastragenol were evaluated using a mouse subcutaneous tumor model. RESULTS: Cycloastragenol triggered both autophagy and apoptosis. Specifically, cycloastragenol promoted apoptosis by facilitating the accumulation of phorbol-12-myristate-13-acetate-induced protein 1 (NOXA), a critical apoptosis-related protein. Moreover, cycloastragenol induced a protective autophagy response through modulation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)/unc-51-like autophagy-activating kinase (ULK1)/mammalian target of rapamycin (mTOR) pathway. CONCLUSION: Our study sheds new light on the antitumor efficacy and mechanism of action of cycloastragenol in NSCLC. This insight provides a scientific basis for exploring combination therapies that use cycloastragenol and inhibiting the AMPK/ULK1/mTOR pathway as a promising approach to combating lung cancer. Please cite this article as follows: Zhu LH, Liang YP, Yang L, Zhu F, Jia LJ, Li HG. Cycloastragenolinduces apoptosis and protective autophagy through AMPK/ULK1/mTOR axis in human non-small celllung cancer cell lines. J Integr Med. 2024: Epub ahead of print.

16.
Ecol Evol ; 14(6): e11489, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840586

RESUMO

Phenotype plasticity and evolution adaptations are the two main ways in which allow populations to deal with environmental changes, but the potential relationship between them remains controversial. Using a reciprocal transplant approach with cattle adapted to the Tibetan Plateau and adjacent lowlands, we aim to investigate the relative contributions of evolutionary processes and phenotypic plasticity in driving both phenotypic and transcriptomic changes under natural conditions. We observed that while numerous genetic transcriptomic changes were evident during the forward adaptation to highland environments, plastic changes predominantly facilitate the transformation of transcriptomes into a preferred state when Tibetan cattle are reintroduced to lowland habitats. Genes with ancestral plasticity are generally reversed by evolutionary adaptations and show a closer expression level to the ancestral stage in evolved Tibetan cattle. A similar trend was also observed at the phenotypes level, with a majority of biochemical and hemorheology phenotypes showing a tendency to revert to their ancestral patterns, suggesting the restoration of ancestral expression levels is a widespread evolutionary trend during adaptation. The findings of our study contribute to the debate regarding the relative contributions of plasticity and genetic changes in mammal environment adaptation. Furthermore, we highlight that the restoration of ancestral phenotypes represents a general pattern in cattle new environment adaptation.

17.
Ecol Lett ; 27(6): e14447, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38844351

RESUMO

Host specialization plays a critical role in the ecology and evolution of plant-microbe symbiosis. Theory predicts that host specialization is associated with microbial genome streamlining and is influenced by the abundance of host species, both of which can vary across latitudes, leading to a latitudinal gradient in host specificity. Here, we quantified the host specificity and composition of plant-bacteria symbioses on leaves across 329 tree species spanning a latitudinal gradient. Our analysis revealed a predominance of host-specialized leaf bacteria. The degree of host specificity was negatively correlated with bacterial genome size and the local abundance of host plants. Additionally, we found an increased host specificity at lower latitudes, aligning with the high prevalence of small bacterial genomes and rare host species in the tropics. These findings underscore the importance of genome streamlining and host abundance in the evolution of host specificity in plant-associated bacteria along the latitudinal gradient.


Assuntos
Tamanho do Genoma , Especificidade de Hospedeiro , Folhas de Planta , Simbiose , Folhas de Planta/microbiologia , Bactérias/genética , Bactérias/classificação , Genoma Bacteriano , Árvores/microbiologia
18.
J Perianesth Nurs ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38888522

RESUMO

PURPOSE: To explore the optimal plan for the timing of indwelling gastric tube placement in oral and maxillofacial malignant tumor patients. DESIGN: A prospective randomized controlled trial. METHODS: 80 patients with oral and maxillofacial tumor were selected, and 40 patients were Pre-operative group. The remaining 40 patients were the control group, called Postoperative group. The body weight and hospital stay of the two groups were observed before and after surgery. Blood samples were taken before surgery and 1, 3 and 7 days after surgery to detect hemoglobin and plasma albumin. FINDINGS: The number of postoperative hospitalization days in the pre-operative group was significantly lower than that in the post-operative group; postoperative hemoglobin and plasma albumins were lower in both groups compared with the preoperative level. CONCLUSIONS: Preoperative nasogastric tube ensured early postoperative administration of gastrointestinal nutrition, promoted postoperative plasma albumin recovery, and shortened the days of hospitalization.

19.
Open Med (Wars) ; 19(1): 20240982, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883336

RESUMO

Carnosine dipeptidase 1 (CNDP1), an enzyme integral to the hydrolysis of dipeptides containing histidine, plays an indispensable role in myriad physiological processes, including hydrolysis of proteins, maturation of specific biochemical functionalities within proteins, tissue regeneration, and regulation of cell cycle. However, the implications of CNDP1 in oncogenesis and its prognostic value are not yet fully elucidated. Initially, we procured the GSE40367 dataset from the Gene Expression Omnibus and established a protein-protein interaction network. Thereafter, we conducted functional and pathway enrichment analyses utilizing GO, KEGG, and GSEA. Moreover, we undertook an association analysis concerning the expression of CNDP1 with immune infiltration, along with survival analysis across various cancers and specifically in hepatocellular carcinoma (HCC). Our study uncovered a total of 2,248 differentially expressed genes, with a down-regulation of CNDP1 in HCC and other cancers. Our explorations into the relationship between CNDP1 and immune infiltration disclosed a negative correlation between CNDP1 expression and the presence of immune cells in HCC. Survival analyses revealed that diminished expression of CNDP1 correlates with an adverse prognosis in HCC and several other types of cancer. These observations intimate that CNDP1 holds promise as a novel prognostic biomarker for both pan-cancer and HCC.

20.
Hepatology ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38904485

RESUMO

BACKGROUND AND AIMS: The surface antigen of hepatitis B virus (HBsAg) serves as an important immune-modulatory factor in chronic hepatitis B (CHB). One aspect of such modulation may act through monocytes which are the major antigen presenting cells (APCs) taking up HBsAg. There is evidence for the encapsulation of hepatocellular miRNAs by HBsAg particles, while its pathobiological significance is unclear. Here, we characterized the miRNA profile in CHB patients and probed their association with liver inflammation. APPROACHES AND RESULTS: We collected plasma from treatment-naive CHB patients (n=110) and quantified total/HBsAg-enveloped miRNAs by qRT-PCR and plasma cytokines by ELISA. The biological effects of HBsAg-delivered miRNAs in monocytes were evaluated by multiple approaches. The clinical significance of candidate miRNAs and cytokines was corroborated in patients with HBV-associated advanced liver diseases. The plasma miRNA profile showed two major clusters, one significantly associated with HBsAg titer and the other correlated with liver inflammation. Among HBsAg-carried miRNAs, miR-939 displayed most significant correlation with IL-8. Mechanistically, miR-939 in subviral particles enters monocytes and significantly augments IL-8 production via the MAPK p38 signaling pathway. Finally, the findings that miR-939 positively correlated with IL-8 level and inflammation/fibrosis stage in the cohort of HBV-associated advanced liver diseases support its causative role in the progression of liver diseases. CONCLUSION: HBsAg particles carry hepatocellular miRNAs, including miR-939, which enter monocytes and alter their functional status such as IL-8 secretion. Our findings demonstrate that HBsAg-miR-939-IL-8 axis may play a crucial role in HBV-induced hepatic necro-inflammation and progression of advanced liver diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...