Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(4): e0127023, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37504575

RESUMO

Pollination services provided by wild insect pollinators are critical to natural ecosystems and crops around the world. There is an increasing appreciation that the gut microbiota of these insects influences their health and consequently their services. However, pollinator gut microbiota studies have focused on well-described social bees, but rarely include other, more phylogenetically divergent insect pollinators. To expand our understanding, we explored the insect pollinator microbiomes across three insect orders through two DNA sequencing approaches. First, in an exploratory 16S amplicon sequencing analysis of taxonomic community assemblages, we found lineage-specific divergences of dominant microbial genera and microbiota community composition across divergent insect pollinator genera. However, we found no evidence for a strong broad-scale phylogenetic signal, which we see for community relatedness at finer scales. Subsequently, we utilized metagenomic shotgun sequencing to obtain metagenome-assembled genomes and assess the functionality of the microbiota from pollinating flies and social wasps. We uncover a novel gut microbe from pollinating flies in the family Orbaceae that is closely related to Gilliamella spp. from social bees but with divergent functions. We propose this novel species be named Candidatus Gilliamella eristali. Further metagenomes of dominant fly and wasp microbiome members suggest that they are largely not host-insect adapted and instead may be environmentally derived. Overall, this study suggests selective processes involving ecology or physiology, or neutral processes determining microbe colonization may predominate in the turnover of lineages in insect pollinators broadly, while evolution with hosts may occur only under certain circumstances and on smaller phylogenetic scales. IMPORTANCE Wild insect pollinators provide many key ecosystem services, and the microbes associated with these insect pollinators may influence their health. Therefore, understanding the diversity in microbiota structure and function, along with the potential mechanisms shaping the microbiota across diverse insect pollinators, is critical. Our study expands beyond existing knowledge of well-studied social bees, like honey bees, including members from other bee, wasp, butterfly, and fly pollinators. We infer ecological and evolutionary factors that may influence microbiome structure across diverse insect pollinator hosts and the functions that microbiota members may play. We highlight significant differentiation of microbiomes among diverse pollinators. Closer analysis suggests that dominant members may show varying levels of host association and functions, even in a comparison of closely related microbes found in bees and flies. This work suggests varied importance of ecological, physiological, and non-evolutionary filters in determining structure and function across largely divergent wild insect pollinator microbiomes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Vespas , Abelhas , Animais , Microbioma Gastrointestinal/fisiologia , Filogenia , Insetos/fisiologia , Polinização
2.
NPJ Biofilms Microbiomes ; 9(1): 27, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225687

RESUMO

Tibetan pigs (TPs) can adapt to the extreme environments in the Tibetan plateau implicated by their self-genome signals, but little is known about roles of the gut microbiota in the host adaption. Here, we reconstructed 8210 metagenome-assembled genomes from TPs (n = 65) living in high-altitude and low-altitude captive pigs (87 from China-CPs and 200 from Europe-EPs) that were clustered into 1050 species-level genome bins (SGBs) at the threshold of 95% average nucleotide identity. 73.47% of SGBs represented new species. The gut microbial community structure analysis based on 1,048 SGBs showed that TPs was significantly different from low-altitude captive pigs. TP-associated SGBs enabled to digest multiple complex polysaccharides, including cellulose, hemicellulose, chitin and pectin. Especially, we found TPs showed the most common enrichment of phyla Fibrobacterota and Elusimicrobia, which were involved in the productions of short- and medium-chain fatty acids (acetic acid, butanoate and propanoate; octanomic, decanoic and dodecanoic acids), as well as in the biosynthesis of lactate, 20 essential amino acids, multiple B vitamins (B1, B2, B3, B5, B7 and B9) and cofactors. Unexpectedly, Fibrobacterota solely showed powerful metabolic capacity, including the synthesis of acetic acid, alanine, histidine, arginine, tryptophan, serine, threonine, valine, B2, B5, B9, heme and tetrahydrofolate. These metabolites might contribute to host adaptation to high-altitude, such as energy harvesting and resistance against hypoxia and ultraviolet radiation. This study provides insights into understanding the role of gut microbiome played in mammalian high-altitude adaptation and discovers some potential microbes as probiotics for improving animal health.


Assuntos
Microbioma Gastrointestinal , Suínos , Animais , Tibet , Raios Ultravioleta , Aclimatação , Ácido Acético , Ambientes Extremos , Mamíferos
3.
mSystems ; 7(4): e0151221, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35758593

RESUMO

The gut microbiome has significant effects on healthy aging and aging-related diseases, whether in humans or nonhuman primates. However, little is known about the divergence and convergence of gut microbial diversity between humans and nonhuman primates during aging, which limits their applicability for studying the gut microbiome's role in human health and aging. Here, we performed 16S rRNA gene sequencing analysis for captive rhesus macaques (Macaca mulatta) and compared this data set with other freely available gut microbial data sets containing four human populations (Chinese, Japanese, Italian, and British) and two nonhuman primates (wild lemurs [Lemur catta] and wild chimpanzees [Pan troglodytes]). Based on the consistent V4 region of the 16S rRNA gene, beta diversity analysis suggested significantly separated gut microbial communities associated with host backgrounds of seven host groups, but within each group, significant gut microbial divergences were observed, and indicator bacterial genera were identified as associated with aging. We further discovered six common anti-inflammatory gut bacteria (Prevotellamassilia, Prevotella, Gemmiger, Coprococcus, Faecalibacterium, and Roseburia) that had butyrate-producing potentials suggested by pangenomic analysis and that showed similar dynamic changes in at least two selected host groups during aging, independent of distinct host backgrounds. Finally, we found striking age-related changes in 66 plasma metabolites in macaques. Two highly changed metabolites, hydroxyproline and leucine, enriched in adult macaques were significantly and positively correlated with Prevotella and Prevotellamassilia. Furthermore, genus-level pangenome analysis suggested that those six common indicator bacteria can synthesize leucine and arginine as hydroxyproline and proline precursors in both humans and macaques. IMPORTANCE This study provides the first comprehensive investigation of age patterning of gut microbiota of four human populations and three nonhuman primates and found that Prevotellamassilia, Prevotella, Gemmiger, Coprococcus, Faecalibacterium, and Roseburia may be common antiaging microbial markers in both humans and nonhuman primates due to their potential metabolic capabilities for host health benefits. Our results also provide key support for using macaques as animal models in studies of the gut microbiome's role during human aging.


Assuntos
Microbioma Gastrointestinal , Animais , Adulto , Humanos , Microbioma Gastrointestinal/genética , Macaca mulatta/genética , RNA Ribossômico 16S/genética , Hidroxiprolina , Leucina
4.
Fish Shellfish Immunol ; 100: 179-185, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32126245

RESUMO

In this study, a new continuous muscle cell line, LYCMS (large yellow croaker muscle cell line), derived from the muscle tissue of larva of large yellow croaker (Larimichthys crocea) was developed with modified DMEM/F12 medium at 27 °C. The muscle cell line could be passaged at different ratios for different growth rates. Karyotype analysis showed that a large proportion of LYCMS cells had 48 chromosomes. The proliferation of LYCMS cell line could be affected by mammalian growth factors such as human basic fibroblast growth factor (b-FGF), epidermal growth factor (EGF), and hepatocyte growth factor (HGF). GFP expression experiments indicated that the LYCMS cell line could be used for exogenous genes' expression. Different virus response-related genes tested in this study showed diverse change types in expression before and after (0-24 h) polycytidylic acid (poly I: C) challenge of LYCMS cells. This is the first study of virus response signaling pathways of large yellow croaker based on the muscle cell line. The results showed that compared with the in vivo experiments, the use of the LYCMS cell line for immune research is more convenient, efficient, and rapid. By using this model, we demonstrated that MDA5-IPS1-TRAF6-NFκB-cytokines, MDA5-IPS1-TRAF3-IRF3-interferon or TLR22-TRIF-IRF3-interferon, TLR8-MyD88-NFκB-cytokines, and TLR3-TRIF-IRF3-interferon pathways were able to response to poly I: C challenge in the muscle cell line of large yellow croaker.


Assuntos
Proteínas de Peixes/genética , Imunidade Inata/genética , Células Musculares/efeitos dos fármacos , Músculos/citologia , Perciformes/imunologia , Poli I-C/farmacologia , Animais , Linhagem Celular , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Cariótipo , Larva/anatomia & histologia , Larva/citologia , Células Musculares/imunologia , Transdução de Sinais , Técnicas de Cultura de Tecidos , Vírus
5.
mSystems ; 4(6)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822600

RESUMO

Bumble bees are important pollinators in natural and agricultural ecosystems. Their social colonies are founded by individual queens, which, as the predominant reproductive females of colonies, contribute to colony function through worker production and fitness through male and new queen production. Therefore, queen health is paramount, but even though there has been an increasing emphasis on the role of gut microbiota for animal health, there is limited information on the gut microbial dynamics of bumble bee queens. Employing 16S rRNA amplicon sequencing and quantitative PCR, we investigate how the adult life stage and physiological state influence a queen's gut bacterial community diversity and composition in unmated, mated, and ovipositing queens of Bombus lantschouensis We found significant shifts in total gut microbe abundance and microbiota composition across queen states. There are specific compositional signatures associated with different stages, with unmated and ovipositing queens showing the greatest similarity in composition and mated queens being distinct. The bacterial genera Gilliamella, Snodgrassella, and Lactobacillus were relatively dominant in unmated and ovipositing queens, with Bifidobacterium dominant in ovipositing queens only. Bacillus, Lactococcus, and Pseudomonas increased following queen mating. Intriguingly, however, further analysis of unmated queens matching the mated queens in age showed that changes are independent of the act of mating. Our study is the first to explore the gut microbiome of bumble bee queens across key life stages from adult eclosion to egg laying and provides useful information for future studies of the function of gut bacteria in queen development and colony performance.IMPORTANCE Bumble bee queens undergo a number of biological changes as they transition through adult emergence, mating, overwintering, foraging, and colony initiation including egg laying. Therefore, they represent an important system to understand the link between physiological, behavioral, and environmental changes and host-associated microbiota. It is plausible that the bumble bee queen gut bacteria play a role in shaping the ability of the queen to survive environmental extremes and reproduce, due to long-established coevolutionary relationships between the host and microbiome members.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...