Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Med Virol ; 95(1): e28386, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477858

RESUMO

Zika virus (ZIKV) is a neurotropic flavivirus. The outbreak of ZIKV in 2016 created a global health emergency. However, the underlying pathogenic mechanisms remain elusive. We investigated the host response features of in vivo replication in a mouse model of ZIKV infection, by performing a series of transcriptomic and bioinformatic analyses of ZIKV and mock-infected brain tissue. Tissue damage, inflammatory cells infiltration and high viral replication were observed in the brain tissue of ZIKV infected mice. RNA-Seq of the brain indicated the activation of ferroptosis pathways. Enrichment analysis of ferroptosis regulators revealed their involvement in pathways such as mineral absorption, fatty acid biosynthesis, fatty acid degradation, PPAR signaling pathway, peroxidase, and adipokinesine signalling pathway. We then identified 12 interacted hub ferroptosis regulators (CYBB, HMOX1, CP, SAT1, TF, SLC39A14, FTL, LPCAT3, FTH1, SLC3A2, TP53, and SLC40A1) that were related to the differential expression of CD8+ T cells, microglia and monocytes. CYBB, HMOX1, SALT, and SLAC40A1 were selected as potential biomarkers of ZIKV infection. Finally, we validated our results using RT-qPCR and outside available datasets. For the first time, we proposed a possible mechanism of ferroptosis in brain tissue infected by ZIKV in mice and identified the four key ferroptosis regulators.


Assuntos
Ferroptose , Interações Hospedeiro-Patógeno , Infecção por Zika virus , Zika virus , Animais , Camundongos , 1-Acilglicerofosfocolina O-Aciltransferase , Proteínas de Transporte de Cátions , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Ácidos Graxos , Ferroptose/genética , Ferroptose/fisiologia , Transcriptoma , Replicação Viral , Zika virus/patogenicidade , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia
3.
Front Pharmacol ; 13: 865097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754492

RESUMO

Objective: People suffering from coronavirus disease 2019 (COVID-19) are prone to develop pulmonary fibrosis (PF), but there is currently no definitive treatment for COVID-19/PF co-occurrence. Kaempferol with promising antiviral and anti-fibrotic effects is expected to become a potential treatment for COVID-19 and PF comorbidities. Therefore, this study explored the targets and molecular mechanisms of kaempferol against COVID-19/PF co-occurrence by bioinformatics and network pharmacology. Methods: Various open-source databases and Venn Diagram tool were applied to confirm the targets of kaempferol against COVID-19/PF co-occurrence. Protein-protein interaction (PPI), MCODE, key transcription factors, tissue-specific enrichment, molecular docking, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to clarify the influential molecular mechanisms of kaempferol against COVID-19 and PF comorbidities. Results: 290 targets and 203 transcription factors of kaempferol against COVID-19/PF co-occurrence were captured. Epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase SRC (SRC), mitogen-activated protein kinase 3 (MAPK3), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 8 (MAPK8), RAC-alpha serine/threonine-protein kinase (AKT1), transcription factor p65 (RELA) and phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) were identified as the most critical targets, and kaempferol showed effective binding activities with the above critical eight targets. Further, anti-COVID-19/PF co-occurrence effects of kaempferol were associated with the regulation of inflammation, oxidative stress, immunity, virus infection, cell growth process and metabolism. EGFR, interleukin 17 (IL-17), tumor necrosis factor (TNF), hypoxia inducible factor 1 (HIF-1), phosphoinositide 3-kinase/AKT serine/threonine kinase (PI3K/AKT) and Toll-like receptor signaling pathways were identified as the key anti-COVID-19/PF co-occurrence pathways. Conclusion: Kaempferol is a candidate treatment for COVID-19/PF co-occurrence. The underlying mechanisms may be related to the regulation of critical targets (EGFR, SRC, MAPK3, MAPK1, MAPK8, AKT1, RELA, PIK3CA and so on) and EGFR, IL-17, TNF, HIF-1, PI3K/AKT and Toll-like receptor signaling pathways. This study contributes to guiding development of new drugs for COVID-19 and PF comorbidities.

4.
Comput Biol Med ; 146: 105601, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35751199

RESUMO

BACKGROUND: The 2019 novel coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a major challenge threatening the global healthcare system. Respiratory virus infection is the most common cause of asthma attacks, and thus COVID-19 may contribute to an increase in asthma exacerbations. However, the mechanisms of COVID-19/asthma comorbidity remain unclear. METHODS: The "Limma" package or "DESeq2" package was used to screen differentially expressed genes (DEGs). Alveolar lavage fluid datasets of COVID-19 and asthma were obtained from the GEO and GSV database. A series of analyses of common host factors for COVID-19 and asthma were conducted, including PPI network construction, module analysis, enrichment analysis, inference of the upstream pathway activity of host factors, tissue-specific analysis and drug candidate prediction. Finally, the key host factors were verified in the GSE152418 and GSE164805 datasets. RESULTS: 192 overlapping host factors were obtained by analyzing the intersection of asthma and COVID-19. FN1, UBA52, EEF1A1, ITGB1, XPO1, NPM1, EGR1, EIF4E, SRSF1, CCR5, PXN, IRF8 and DDX5 as host factors were tightly connected in the PPI network. Module analysis identified five modules with different biological functions and pathways. According to the degree values ranking in the PPI network, EEF1A1, EGR1, UBA52, DDX5 and IRF8 were considered as the key cohost factors for COVID-19 and asthma. The H2O2, VEGF, IL-1 and Wnt signaling pathways had the strongest activities in the upstream pathways. Tissue-specific enrichment analysis revealed the different expression levels of the five critical host factors. LY294002, wortmannin, PD98059 and heparin might have great potential to evolve into therapeutic drugs for COVID-19 and asthma comorbidity. Finally, the validation dataset confirmed that the expression of five key host factors were statistically significant among COVID-19 groups with different severity and healthy control subjects. CONCLUSIONS: This study constructed a network of common host factors between asthma and COVID-19 and predicted several drugs with therapeutic potential. Therefore, this study is likely to provide a reference for the management and treatment for COVID-19/asthma comorbidity.


Assuntos
Asma , COVID-19 , Asma/genética , Líquido da Lavagem Broncoalveolar , COVID-19/genética , Biologia Computacional , RNA Helicases DEAD-box , Perfilação da Expressão Gênica , Humanos , Peróxido de Hidrogênio , Fatores Reguladores de Interferon/genética , Mapas de Interação de Proteínas/genética , SARS-CoV-2 , Fatores de Processamento de Serina-Arginina/genética
5.
Front Pharmacol ; 12: 718874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002688

RESUMO

Background: The COVID-19 pandemic poses an imminent threat to humanity, especially for those who have comorbidities. Evidence of COVID-19 and COPD comorbidities is accumulating. However, data revealing the molecular mechanism of COVID-19 and COPD comorbid diseases is limited. Methods: We got COVID-19/COPD -related genes from different databases by restricted screening conditions (top500), respectively, and then supplemented with COVID-19/COPD-associated genes (FDR<0.05, |LogFC|≥1) from clinical sample data sets. By taking the intersection, 42 co-morbid host factors for COVID-19 and COPD were finally obtained. On the basis of shared host factors, we conducted a series of bioinformatics analysis, including protein-protein interaction analysis, gene ontology and pathway enrichment analysis, transcription factor-gene interaction network analysis, gene-microRNA co-regulatory network analysis, tissue-specific enrichment analysis and candidate drug prediction. Results: We revealed the comorbidity mechanism of COVID-19 and COPD from the perspective of host factor interaction, obtained the top ten gene and 3 modules with different biological functions. Furthermore, we have obtained the signaling pathways and concluded that dexamethasone, estradiol, progesterone, and nitric oxide shows effective interventions. Conclusion: This study revealed host factor interaction networks for COVID-19 and COPD, which could confirm the potential drugs for treating the comorbidity, ultimately, enhancing the management of the respiratory disease.

6.
BioData Min ; 13: 17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082858

RESUMO

BACKGROUND: Chinese medicine Xuebijing (XBJ) has proven to be effective in the treatment of mild coronavirus disease 2019 (COVID-19) cases. But the bioactive compounds and potential mechanisms of XBJ for COVID-19 prevention and treatment are unclear. This study aimed to examine the potential effector mechanisms of XBJ on COVID-19 based on network pharmacology. METHODS: We searched Chinese and international papers to obtain the active ingredients of XBJ. Then, we compiled COVID-19 disease targets from the GeneCards gene database and via literature searches. Next, we used the SwissTargetPrediction database to predict XBJ's effector targets and map them to the abovementioned COVID-19 disease targets in order to obtain potential therapeutic targets of XBJ. Cytoscape software version 3.7.0 was used to construct a "XBJ active-compound-potential-effector target" network and protein-protein interaction (PPI) network, and then to carry out network topology analysis of potential targets. We used the ClueGO and CluePedia plugins in Cytoscape to conduct gene ontology (GO) biological process (BP) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis of XBJ's effector targets. We used AutoDock vina and PyMOL software for molecular docking. RESULTS: We obtained 144 potential COVID-19 effector targets of XBJ. Fourteen of these targets-glyceraldehyde 3-phosphate dehydrogenase (GAPDH), albumin (ALB), tumor necrosis factor (TNF), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase 1 (MAPK1), Caspase-3 (CASP3), signal transducer and activator of transcription 3 (STAT3), MAPK8, prostaglandin-endoperoxide synthase 2 (PTGS2), JUN, interleukin-2 (IL-2), estrogen receptor 1 (ESR1), and MAPK14 had degree values > 40 and therefore could be considered key targets. They participated in extracellular signal-regulated kinase 1 and 2 (ERK1, ERK2) cascade, the T-cell receptor signaling pathway, activation of MAPK activity, cellular response to lipopolysaccharide, and other inflammation- and immune-related BPs. XBJ exerted its therapeutic effects through the renin-angiotensin system (RAS), nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), MAPK, phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K)-protein kinase B (Akt)-vascular endothelial growth factor (VEGF), toll-like receptor (TLR), TNF, and inflammatory-mediator regulation of transient receptor potential (TRP) signaling pathways to ultimately construct a "drug-ingredient-target-pathway" effector network. The molecular docking results showed that the core 18 effective ingredients had a docking score of less than - 4.0 with those top 10 targets. CONCLUSION: The active ingredients of XBJ regulated different genes, acted on different pathways, and synergistically produced anti-inflammatory and immune-regulatory effects, which fully demonstrated the synergistic effects of different components on multiple targets and pathways. Our study demonstrated that key ingredients and their targets have potential binding activity, the existing studies on the pharmacological mechanisms of XBJ in the treatment of sepsis and severe pneumonia, could explain the effector mechanism of XBJ in COVID-19 treatment, and those provided a preliminary examination of the potential effector mechanism in this disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...