Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34737781

RESUMO

BACKGROUND: Chronic pulmonary heart disease (CPHD) is a common type of heart disease. In China, chronic obstructive pulmonary disease (COPD) is one of the main causes of CPHD. At present, there is no specific therapy for COPD-induced CPHD, so it is of great importance to identify a new therapy for CPHD. OBJECTIVE: The purpose of this study was to explore the effects of "Yiqi Huayu, Wenyang Lishui" prescription (YHWLP) on CPHD symptoms. METHODS: Eighty patients with COPD-induced CPHD were randomly divided into the control group and the YHWLP group, both involving treatment for 3 months. Both groups were treated with Western medicine, and the YHWLP group was also treated with YHWLP. The changes (relative to baseline) in the symptoms, pulmonary arterial pressure, prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen (Fbg), D-dimer (D-D), and ratio of phosphorylated (p)-myosin-binding subunit (MBS)/total (t)-MBS in peripheral blood (which indirectly indicates the activation/inhibition of RhoA/ROCK signaling) were compared between the two groups. RESULTS: YHWLP plus Western medicine was superior to Western medicine alone at reducing symptoms, pulmonary arterial pressure, PT, aPTT, Fbg, D-D, and p-MBS/t-MBS. CONCLUSION: YHWLP can relieve CPHD by inhibiting the RhoA/ROCK signaling pathway, which means YHWLP is a potential treatment for CPHD.

2.
Appl Opt ; 60(13): 3634-3640, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33983295

RESUMO

A plasmonic bandpass filter based on parallel bulk Dirac semimetals (BDSs) is proposed and numerically investigated using the finite-difference time-domain method. The proposed filter is realized by the evanescent coupling between the resonator and waveguide, and Fabry-Parot resonant theory is used to analyze its realization mechanism. The performance of the filter can be tuned by changing the coupling distance, length of the resonator, and Fermi levels of the BDSs. We further simulate a plasmonic broadband filter using coupling mode splitting by locating two identical resonators along the waveguide direction. The pass band of the proposed broadband filter can be tuned by adjusting the coupling distances between the resonators and waveguide.

3.
Appl Opt ; 54(24): 7455-61, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26368785

RESUMO

We investigate the plasmonic analog of electromagnetically induced transparency (EIT) using two adjacent graphene-based Fabry-Perot (F-P) resonators side coupling to a nanoribbon waveguide. By the coupling mode theory in time and F-P resonant model, the destructive interference from the coupling of the two F-P resonators results in the EIT-like optical response. The induced peak and width of the transparency window can be dynamically manipulated by varying the coupling distance of the two resonators, and the transparent window is easily shifted by tuning the resonator length or the chemical potential of the graphene nanoribbon. In order to verify the characteristics of slow light, the group index profile is analyzed at different coupling distances. The proposed graphene-based EIT-like system could open up new opportunities for potential applications in plasmonic slow light and optical information buffering devices.

4.
Appl Opt ; 54(10): 2558-64, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25967159

RESUMO

A plasmonic bandpass filter based on graphene is proposed and numerically investigated using the finite-difference time-domain method. The proposed filter has a very simple structure, including two graphene nanoribbon waveguides laterally coupled to a graphene ribbon resonator. The transmission efficiency can be tuned by altering the coupling distance between the ribbons. At the same time, the variation of the transmission spectra is investigated by tuning the size of the graphene resonant ribbon. Notably, due to the unique electronic tunability of graphene, the transmission spectra can be freely tuned in a broad frequency range by choosing the chemical potential, which exhibits more flexible tunability than that used in conventional metallic devices. Attributed to the standing wave distribution of different modes excited in the graphene resonant ribbon, the proposed filter can be used for the plasmonic device with the capability of band selection or power splitting by locating the output waveguide ports in the suitable positions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...