Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 355: 124102, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710362

RESUMO

Lead (Pb) and cadmium (Cd) have been identified as the primary contaminants in soil, posing potential health threats. This study aimed to examine the effects of applying a nitrogen fertilizer and a fungal agent Trichoderma harzianum J2 (nitrogen alone, fungi alone, and combined use) on the phytoremediation of soils co-contaminated with Pb and Cd. The growth of Leucaena leucocephala was monitored in the seedling, differentiation, and maturity stages to fully comprehend the remediation mechanisms. In the maturity stage, the biomass of L. leucocephala significantly increased by 18% and 29% under nitrogen-alone (NCK+) and fungal agent-alone treatments (J2), respectively, compared with the control in contaminated soil (CK+). The remediation factors of Pb and Cd with NCK+ treatment significantly increased by 50% and 125%, respectively, while those with J2 treatment increased by 73% and 145%, respectively. The partial least squares path model suggested that the nitrogen-related soil properties were prominent factors affecting phytoextraction compared with biotic factors (microbial diversity and plant growth). This model explained 2.56 of the variation in Cd concentration under J2 treatment, and 2.97 and 2.82 of the variation in Pb concentration under NCK+ and J2 treatments, respectively. The redundancy analysis showed that the samples under NCK+ and J2 treatments were clustered similarly in all growth stages. Also, Chytridiomycota, Mucoromucota, and Ciliophora were the key bioindicators for coping with heavy metals. Overall, a similar remediation mechanism allowed T. harzianum J2 to replace the nitrogen fertilizer to avoid secondary pollution. In addition, their combined use further increased the remediation efficiency.


Assuntos
Biodegradação Ambiental , Cádmio , Fertilizantes , Metais Pesados , Nitrogênio , Poluentes do Solo , Fertilizantes/análise , Poluentes do Solo/metabolismo , Nitrogênio/metabolismo , Cádmio/metabolismo , Metais Pesados/metabolismo , Chumbo/metabolismo , Solo/química , Hypocreales/metabolismo
2.
Front Microbiol ; 14: 1131770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779699

RESUMO

Rapid growth in the mining industry has brought about a large formation of tailings, which result in serious destruction of the ecological environment and severe soil pollution problems. This study assesses soil nutrients, soil bacterial community and soil microbes' metabolic function in heavily polluted areas (W1), moderately polluted areas (W2), lightly polluted areas (W3) and clean areas (CK) using 16S Illumina sequencing. The results of this study showed that compared with CK, a severe loss of soil nutrients and richness of OTUs (Chao1 and ACE indices) were observed with the aggravated pollution of tailings. The Chao1 and ACE indices in the W1 group decreased significantly by 15.53 and 16.03%, respectively, (p < 0.01). Besides, the relative abundance of Actinobacteria and Proteobacteria was high whereas and relative abundance of Chloroflexi in the polluted areas. Among them, W1 groups increased significantly the relative abundance of Actinobacteria and decreased significantly the relative abundance of Chloroflexi, these can be used as indicator phyla for changes in soil community structures under polluted stress. Tax4 Fun analysis showed that W1 groups affected the soil bacterial community and altered the primary types of biological metabolism in polluted areas. Tailings have adverse impacts on soil bacterial community and metabolic functions, and the deterioration in soil quality is dependent on the levels of tailings pollution. Cumulatively, this study provides valuable information on the bacterial community structure and metabolic functions in the tailing polluted soil.

3.
Front Microbiol ; 14: 1272591, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840744

RESUMO

Soil microorganisms play a crucial role in remediating contaminated soils in modern ecosystems. However, the potential of combining microorganisms with legumes to enhance the remediation of heavy metal-contaminated soils remains unexplored. To investigate this, we isolated and purified a highly efficient cadmium and lead-tolerant strain. Through soil-cultivated pot experiments with two leguminous plants (Robinia pseudoacacia L. and Sophora xanthantha), we studied the effects of applying this microbial agent on plant nutrient uptake of soil nutrients, heavy metal accumulation, and the dynamics of heavy metal content. Additionally, we examined the response characteristics of inter-root microbial and bacterial communities. The results demonstrated that microorganisms screened from heavy metal-contaminated soil environments exhibited strong survival and adaptability in heavy metal solutions. The use of the Serratia marcescens WZ14 strain-phytoremediation significantly increased the soil's ammonium nitrogen (AN) and organic carbon (OC) contents compared to monoculture. In addition, the lead (Pb) and cadmium (Cd) contents of the soil significantly decreased after combined remediation than those of the soil before potting. However, the remediation effects on Pb- and Cd-contaminated soils differed between the two legumes following the Serratia marcescens WZ14 inoculation. The combined restoration altered the composition of the plant inter-rhizosphere bacterial community, with the increase in the relative abundance of both Proteobacteria and Firmicutes. Overall, the combined remediation using the tolerant strain WZ14 with legumes proved advantageous. It effectively reduced the heavy metal content of the soil, minimized the risk of heavy metal migration, and enhanced heavy metal uptake, accumulation, and translocation in the legumes of S. xanthantha and R. pseudoacacia. Additionally, it improved the adaptability and resistance of both legumes, leading to an overall improvement in the soil's environmental quality. These studies can offer primary data and technical support for remediating and treating Cd and Pb in soils, as well as rehabilitating mining sites.

4.
Huan Jing Ke Xue ; 44(7): 4191-4200, 2023 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-37438316

RESUMO

A rapid rise in industrialization has led to the accumulation of copious mining waste, which has caused serious destruction of the ecological environment, resulting in severe pollution problems that need to be addressed urgently. In this study, altered soil bacterial communities in different polluted areas were analyzed using the Illumina high-throughput sequencing technique. The primary factors along with physical and chemical factors influencing the soil bacterial communities were also investigated, and the associated potential ecological functions were predicted. The results of these analyses indicated that aggravated pollution caused severe loss of tailing soil nutrients. A total of 14253 bacterial OTU was obtained from the soil samples. The total numbers of OTU in the heavily polluted area (W1), moderately polluted area (W2), lightly polluted area (W3), and clean area (CK) were 3240, 3330, 3813, and 3870, respectively. However, the soil OTUs decreased gradually with increasing pollution. In the α-diversity index analysis, the richness and evenness of the soil bacterial community were significantly decreased in the W1 group. A significant decrease in the Chao1, ACE, and Shannon indexes was also observed in the W1 group, whereas no significant difference was observed in the W3 group compared to the control. The dominant bacterial phyla identified in the soil wereß-Actinobacteria, ß-Proteobacteria, and ß-Chloroflexi. Further, the relative abundance of ß-Actinobacteria and ß-Proteobacteria was high, whereas relative abundance of ß-Chloroflexi in the W1-W3 groups was low compared to that in the control. The relative abundance of the dominant phylum in the W1 group was significantly different than that in the CK group (P<0.05). RDA showed that the soil physical and chemical properties selected in this study explained the total variation in soil bacterial community by 93.35%. Spearman analysis showed that ß-Actinobacteria was negatively correlated with nitrogen source and organic matter and positively correlated with pH; ß-Proteobacteria was negatively correlated with nitrogen source, phosphorus source, available potassium, and organic matter and positively correlated with total potassium and pH; and ß-Chloroflexi was positively correlated with nitrogen source, phosphorus source, available potassium, and organic matter and negatively correlated with pH. Tax4 Fun was used to analyze the biological metabolic pathway. Heavy metal pollution in the soil affected the soil bacterial community and changed the main types of biological metabolism. The ecological functions of soil bacteria groups in different polluted areas were predicted by FAPROTAX. The results showed that the dominant metabolic patterns were affected by the pollution degree, and the metabolic patterns of soil bacteria in polluted areas were relatively single. The functional abundance of metabolic patterns of soil bacteria communities in CK was higher than that in polluted areas, which not only participated in degradation metabolism but also related to oxidation metabolism.


Assuntos
Actinobacteria , Betaproteobacteria , Solo , Zinco , Chumbo , Meio Ambiente , Nitrogênio
5.
Front Microbiol ; 13: 926037, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992669

RESUMO

Microbial-assisted phytoremediation promotes the ecological restoration of high and steep rocky slopes. To determine the structure and function of microbial communities in the soil in response to changes in soil nutrient content, the bacterial communities of rhizospheric soil from three types of plants, i.e., Robinia pseudoacacia, Pinus massoniana, and Cynodon dactylon, were analyzed using Illumina sequencing technology. High-quality sequences were clustered at the 97% similarity level. The dominant genera were found to be RB41, Gemmatimonas, Sphingomonas, Bradyrhizobium, and Ellin6067. The Tukey HSD (honestly significant difference) test results showed that the abundance of RB41 and Gemmatimonas were significantly different among three types of plants (p < 0.01). The relative abundances of RB41 (13.32%) and Gemmatimonas (3.36%) in rhizospheric soil samples from R. pseudoacacia were significantly higher than that from P. massoniana (0.16 and 0.35%) and C. dactylon (0.40 and 0.82%), respectively. The soil chemical properties analyses suggested that significant differences in rhizospheric soil nutrient content among the three plant types. Especially the available phosphorus, the content of it in the rhizospheric soil of R. pseudoacacia was about 280% (P. massoniana) and 58% (C. dactylon) higher than that of the other two plants, respectively. The soil bacterial communities were further studied using the correlation analysis and the Tax4Fun analysis. A significant and positive correlation was observed between Gemmatimonas and soil nutrient components. Except total nitrogen, the positive correlation between Gemmatimonas and other soil nutrient components was above 0.9. The outcomes of these analyses suggested that Gemmatimonas could be the indicator genus in response to changes in the soil nutrient content. Besides, the genes involved in metabolism were the major contributor to soil nutrients. This study showed that soil nutrients affect the soil bacterial community structure and function. In addition, pot experiments showed that Microbacterium invictum X-18 isolated from the rhizospheric soil of R. pseudoacacia significantly improved soil nutrient content and increased R. pseudoacacia growth. A significant increase in the numbers of nodules of R. pseudoacacia and an increase of 28% in plant height, accompanied by an increase of 94% in available phosphorus was measured in the M. invictum X-18 treatment than the control treatment.

6.
Pest Manag Sci ; 78(2): 521-529, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34561954

RESUMO

BACKGROUND: In-field weed detection in wheat (Triticum aestivum L.) is challenging due to the occurrence of weeds in close proximity with the crop. The objective of this research was to evaluate the feasibility of using deep convolutional neural networks for detecting broadleaf weed seedlings growing in wheat. RESULTS: The object detection neural networks, including CenterNet, Faster R-CNN, TridenNet, VFNet, and You Only Look Once Version 3 (YOLOv3) were insufficient for weed detection in wheat because the recall never exceeded 0.58 in the testing dataset. The image classification neural networks including AlexNet, DenseNet, ResNet, and VGGNet were trained with small (5500 negative and 5500 positive images) or large training datasets (11 000 negative and 11 000 positive images) and three training image sizes (200 × 200, 300 × 300, and 400 × 400 pixels). For the small training dataset, increasing image sizes decreased the F1 scores of AlexNet and VGGNet but generally increased the F1 scores of DenseNet and ResNet. For the large training dataset, no obvious difference was detected between the training image sizes since all neural networks exhibited remarkable classification accuracies with high F1 scores (≥0.96). All image classification neural networks exhibited high F1 scores (≥0.99) when trained with the large training dataset and the training images of 200 × 200 pixels. CONCLUSION: CenterNet, Faster R-CNN, TridentNet, VFNet, and YOLOv3 were insufficient, while AlexNet, DenseNet, ResNet, and VGGNet trained with a large training dataset were highly effective for detection of broadleaf weed seedlings in wheat. © 2021 Society of Chemical Industry.


Assuntos
Plântula , Triticum , Redes Neurais de Computação , Plantas Daninhas
7.
Front Microbiol ; 13: 1079348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699592

RESUMO

Currently, plant growth-promoting rhizobacteria (PGPR) microbial inoculants are heavily used in agricultural production among which Pseudomonas sp. and Bacillus sp. are two excellent inoculum strains, which are widely used in plant growth promotion and disease control. However, few studies have been conducted on the combined use of the two bacteria. The aim of this study was to investigate the effects of co-inoculation of these two bacteria on soybean [Glycine max (L.) Merrill] growth and physiological indexes and further study the effect of microbial inoculants on native soil bacterial communities and plant endophyte microbiota, especially microorganisms in rhizosphere and root. A pot experiment was conducted and four treatments were designed: group without any strain inoculant (CK); group inoculated with Pseudomonas chlororaphis H1 inoculant (J); group inoculated with Bacillus altitudinis Y1 inoculant (Y) and group inoculated with equal volume of P. chlororaphis H1 inoculant and B. altitudinis Y1 inoculant (H). Compared with CK, the three inoculant groups J, Y, and H exhibited improved soybean growth and physiological indexes, and group H was the most significant (p < 0.05). In terms of rhizosphere bacterial community structure, the relative abundance of native Luteimonas (9.31%) was higher in the H group than in the J (6.07%), Y (3.40%), and CK (5.69%) groups, which has potential value of disease suppression. Besides, compared with bacterial communities of the other three groups in soybean roots, group H increased the abundance of beneficial bacterial community for the contents of Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Devosia, and Methylobacillus significantly increased (p < 0.05). In conclusion, we found that the composite inoculum of Pseudomonas chlororaphis H1 and Bacillus altitudinis Y1 could effectively promote soybean growth, increase yield and improve the beneficial bacterial community in root and rhizosphere and have certain value for soil improvement.

8.
Front Microbiol ; 12: 738734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650540

RESUMO

It is found effective for phytoremediation of the guest soil spraying method by adding microbes to promote the growth of arbor leguminous plant on a high and steep rock slope. However, its underlying mechanisms remain elusive. Here, some experiments were conducted to explore the multifunctions of Penicillium simplicissimum NL-Z1 on rock weathering, nodule growth, and beneficial microbial regulation. The results show that P. simplicissimum NL-Z1 significantly increased the release of phosphorus, potassium, calcium, and magnesium from the rock by 226, 29, 24, and 95%, respectively, compared with that of the control. A significant increase of 153% in Indigofera pseudotinctoria Matsum nodule biomass, accompanied by an increase of 37% in the leguminous plant biomass was observed in the P. simplicissimum NL-Z1 treatment than in the control treatment. Interestingly, even though P. simplicissimum NL-Z1 itself became a minor microbial community in the soil, it induced a significant increase in Mortierella, which, as a beneficial microbe, can promote phosphate-solubilizing and plant growth. The results suggest that P. simplicissimum NL-Z1 could induce an imposed effect to promote leguminous plant growth, which may be conducive to the development of the phytoremediation technique for high and steep rock slope. The study provides a novel thought of using the indirect effect of microbes, i.e., promoting other beneficial microbes, to improve soil environment.

9.
Ecotoxicol Environ Saf ; 160: 154-161, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29803190

RESUMO

The influence of acid rain on plant growth includes direct effects on foliage as well as indirect soil-mediated effects that cause a reduction in root growth. In addition, the concentration of NO3- in acid rain increases along with the rapid growth of nitrogen deposition. In this study, we investigated the impact of simulated acid rain with different SO42-/NO3- (S/N) ratios, which were 1:0, 5:1, 1:1, 1:5 and 0:1, on Chinese fir sapling growth from March 2015 to April 2016. Results showed that Chinese fir sapling height growth rate (HGR) and basal diameter growth rate (DGR) decreased as acid rain pH decreased, and also decreased as the percentage of NO3- increased in acid rain. Acid rain pH significantly decreased the Chlorophyll a (Chla) and Chlorophyll b (Chlb) content, and Chla and Chlb contents with acid rain S/N 1:5 were significantly lower than those with S/N 1:0 at pH 2.5. The chlorophyll fluorescence parameters, maximal efficiency of Photosystem II photochemistry (Fv/Fm) and non-photochemical quenching coefficient (NPQ), with most acid rain treatments were significantly lower than those with CK treatments. Root activities first increased and then decreased as acid rain pH decreased, when acid rain S/N ratios were 1:1, 1:5 and 0:1. Redundancy discriminant analysis (RDA) showed that the Chinese fir DGR and HGR had positive correlations with Chla, Chlb, Fv/Fm ratio, root activity, catalase and superoxide dismutase activities in roots under the stress of acid rain with different pH and S/N ratios. The structural equation modelling (SEM) results showed that acid rain NO3- concentration and pH had stronger direct effects on Chinese fir sapling HGR and DGR, and the direct effects of acid rain NO3- concentration and pH on HGR were lower than those on DGR. Our results suggest that the ratio of SO42- to NO3- in acid rain is an important factor which could affect the sustainable development of monoculture Chinese fir plantations in southern China.


Assuntos
Chuva Ácida/toxicidade , Cunninghamia/efeitos dos fármacos , Ácido Nítrico/toxicidade , Ácidos Sulfúricos/toxicidade , China , Clorofila/metabolismo , Clorofila A , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...