Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 209: 111771, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33348253

RESUMO

Excessive molybdenum (Mo) has adverse effects on animals. To elucidate the effects of autophagy on Mo-induced nephrotoxicity, the duck renal tubular epithelial cells were cultured in medium in absence and presence of (NH4)6Mo7O24.4H2O (0, 480, 720, 960 µM Mo), 3-Methyladenine (3-MA) (2.5 µM), and the combination of Mo and 3-MA for 12 h. After 12 h exposure, the MDC staining, morphologic observation, LC3 puncta, cell viability, autophagy-related genes mRNA and proteins levels, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) level, antioxidant indices, mitochondrial membrane potential (MMP), mitochondrial mass, mitochondrial respiratory control ratio (RCR) and oxidative phosphorylation rate (OPR) were determined. The results showed that excessive Mo exposure significantly elevated the number of autophagosome and LC3 puncta, upregulated Beclin-1, Atg5, LC3A and LC3B mRNA levels, and LC3II/LC3I and Beclin-1 protein levels, decreased mTOR, p62 and Dynein mRNA levels and p62 protein level. Besides, co-treatment with Mo and 3-MA dramatically increased LDH release, ROS level, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents as well as cell dam age, reduced cell viability, the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), MMP, mitochondrial mass, mitochondrial RCR and OPR compared to treatment with Mo alone. Taken together, these results suggest that excessive Mo exposure can induce autophagy in duck renal tubular epithelial cells, inhibition of autophagy aggravates Mo-induced mitochondrial dysfunction by regulating oxidative stress.


Assuntos
Células Epiteliais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Molibdênio/toxicidade , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/metabolismo , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Catalase/metabolismo , Patos/metabolismo , Patos/fisiologia , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
2.
Poult Sci ; 98(12): 6533-6541, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31424537

RESUMO

To investigate Molybdenum (Mo) and Cadmium (Cd) co-induced the levels of autophagy-related genes via AMPK/mTOR signaling pathway in Shaoxing Duck (Anas platyrhyncha) kidney, 60 healthy 11-day-old ducks were randomly divided into 6 groups, which were treated with Mo or/and Cd at different doses on the basal diet for 120 d. Kidney samples were collected on day 120 to determine the mRNA expression levels of adenosine 5'-monophosphate (AMP)-activated protein kinase α1 (AMPKα1), mammalian target of rapamycin (mTOR), Beclin-1, autophagy-related gene-5 (Atg5), microtubule-associated protein light chain A (LC3A), microtubule-associated protein light chain B (LC3B), sequestosome-1, and Dynein by real-time quantitative polymerase chain reaction. Meanwhile, ultrastructural changes of the kidney were observed. The results indicated that the mTOR and P62 mRNA expression levels were significantly downregulated, but the Atg5 and Beclin-1 mRNA levels were remarkably upregulated in all treated groups compared to control group, and their changes were greater in joint groups. Additionally, compared to control group, the Dynein mRNA expression level was apparently downregulated in co-treated groups, the LC3B, LC3A, and AMPKα1 expression levels were dramatically upregulated in single treated groups and they were not obviously different in co-treated groups. Ultrastructural changes showed that Mo and Cd could markedly increase the number of autophagosomes. Taken together, it suggested that dietary Mo and Cd might induce autophagy via AMPK/mTOR signaling pathway in duck kidney, and it showed a possible synergistic relationship between the 2 elements.


Assuntos
Autofagia/genética , Cádmio/metabolismo , Patos/fisiologia , Regulação da Expressão Gênica , Rim/metabolismo , Molibdênio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas Aviárias/metabolismo , Poluentes Ambientais/metabolismo , Minerais/metabolismo , Distribuição Aleatória , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
3.
Toxicol In Vitro ; 61: 104625, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31419506

RESUMO

Cadmium (Cd) is a well studied nephrotoxic metal element. To investigate the effects of Cd-induced cytotoxicity on oxidative stress-mediated apoptosis in primary renal tubular epithelial cells of duck. Shaoxing duck (Anas platyrhyncha) renal tubular epithelial cells were cultured in medium in absence and presence of 3CdSO4·8H2O (1.25, 2.5, 5.0 µM Cd), in N-acetyl-l-cysteine (NAC) (100 µM), and the combination of Cd and NAC for 12 h. After 12 h exposure, morphologic observation and function, reactive oxygen species (ROS) level, antioxidant indices, the activity of ATPase, intracellular pH and [Ca2+]i, mitochondrial membrane potential (MMP), and apoptosis-related genes mRNA were determined. The results showed that Cd exposure could induce release of intracellular lactate dehydrogenase (LDH), simultaneously, enhance the ROS generation, acidification, malondialdehyde (MDA) and [Ca2+]i, decrease glutathione (GSH), Na+, K+-ATPase, Ca2+-ATPase, catalase (CAT), superoxide dismutase (SOD), total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) activities as well as MMP, upregulated Bak-1, Bax and Caspase-3 mRNA expression, inhibited Bcl-2 mRNA expression, and induced cell apoptosis. The toxicity of Cd to cells showed a dose-dependent manner. Antioxidant NAC could efficiently alleviate Cd-induced the cytotoxicity. Taken together, these results suggest that Cd exposure cause cytotoxicity through oxidative stress-mediated apoptosis pathway in duck renal tubular epithelial cells.


Assuntos
Cádmio/toxicidade , Células Epiteliais/efeitos dos fármacos , Túbulos Renais/citologia , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Patos , Células Epiteliais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...