Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169054, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38052386

RESUMO

N-nitrosodiethylamine (NDEA), which is the most toxic nitrosamine among the 9 detected species, has been widely detected in drinking water. Amines containing diethylamine (DEA) groups in the structure would generate NDEA during the disinfection processes. The aim of this study was to evaluate the feasibility of reducing NDEA formation from a commonly used dithiocarbamate pesticide sodium diethyldithiocarbamate (DEDTC) in subsequent chlorination and chloramination by pre-ozonation. The results demonstrated that NDEA could be generated directly during ozonation, its amounts increased from 0 to 14.34 µg/L with increasing ozone dosages (0-4 mg/L), which was higher than that chlorination (2.68 µg/L) and chloramination (4.91 µg/L) when the initial concentration of DEDTC was 20 µM. Pre-ozonation significantly raised NDEA formation from 2.68 to15.32 µg/L in subsequent chlorination; and that from 4.91 to 9.54 µg/L during subsequent chloramination processes. The addition of •OH scavenger tert-butanol (tBA) increased the production of NDEA from 8.14 to 20.80 µg/L during ozonation, and that from 6.76 to17.98 µg/L in O3/HClO process, 8.74 to 17.33 µg/L in O3/NH2Cl process. Except for NO3- and CO32-, most of the co-existing substances promoted NDEA generation from DEDTC under disinfection conditions. Based on the results of Gaussian theory calculations, GC/MS and UPLC-Q-TOFMS analysis, the influencing mechanisms of pre-ozonation on NDEA generation in the subsequent disinfection process were proposed. In addition, not only acute/chronic toxicity calculation but also luminescent bacteria test was performed to assess the possibility of pre-ozonation on the risk control of DEDTC. The research results fill a gap in the control of NDEA pollution and help to develop a safer ozone oxidation technology.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Halogenação , Dietilnitrosamina , Estudos de Viabilidade , Desinfecção/métodos , Ozônio/análise , Purificação da Água/métodos , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 861: 160562, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36455729

RESUMO

Land-based transport from nearshore areas is a key pathway of microplastic (MP) pollution in the oceans. Therefore, transport, fate, and intervention on MPs necessitate an investigation of MP contamination in coastal regions. Here, MP pollution in the surface waters of Xiamen Bay and Jiulong River estuary was evaluated in 2021 after the outbreak of COVID-19. The abundance of MPs in Xiamen Bay ranged from 0.20 to 5.79 items m-3 with an average of 1.03 items m-3, whereas that in the Jiulong River estuary spanned from 0.55 to 2.11 items m-3 with a mean of 1.30 items m-3. A yearly decreasing trend in the abundance of MPs in surface waters in both regions was observed. The particle sizes of MPs were concentrated in the range of 2.50-5.00 mm, and the colors were mainly white, transparent, and green. The micro-Raman spectroscopic results showed that MP polymer types were predominantly polyethylene, polypropylene, and polystyrene. A lower abundance of MPs in Xiamen Bay with no obvious pattern was observed, while that in the Jiulong River estuary showed a wavelike distribution from upstream to downstream. Ecological risk assessment of MP pollution in surface waters of two regions was performed using the pollution load index (PLI), giving the risk level in descending order: wastewater discharge area > aquaculture area > sloughs > estuary mouth > estuarine rivers > shipping lane. The average risk level of Xiamen Bay (I) was lower than that in Jiulong River estuary (II). The MP pollution in the Jiulong River estuary appeared heavier than that in Xiamen Bay, which may be due to the combined effects of COVID-19 and marine governance. This study provided insights into the prevention and management of MP pollution in nearshore semi-enclosed bays.


Assuntos
COVID-19 , Poluentes Químicos da Água , Humanos , Microplásticos , Baías/química , Estuários , Plásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , COVID-19/epidemiologia , Surtos de Doenças , China
3.
Chemosphere ; 293: 133637, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35063553

RESUMO

Secondary organic aerosols (SOA) are important atmospheric pollutants that affect air quality, radiation, and human health. In this study, 14 typical SOA tracers were measured in PM2.5 collected from three central cities of the Yangtze River Delta (YRD) region in the winter of 2014 and the summer of 2015. Among the determined SOA tracers, α/ß-pinene SOA tracers contributed 55.9%, followed by isoprene SOA tracers (33.7%), anthropogenic benzene SOA tracer (6.4%) and ß-caryophyllene SOA tracer (4.0%). There was no significant difference in the concentration of individual SOA tracers among the three cities (p > 0.05), indicating a high degree of regional consistency. The concentrations of isoprene, α/ß-pinene, and toluene SOA tracers were significantly higher in summer than in winter. A correlation of SOA tracers with temperature implies that the isoprene and α/ß-pinene SOA tracers in summer were greatly boosted by plant emissions and the high DHOPA in summer could be attributed to evaporation of paint and solvent. In contrast, the elevated ß-caryophyllene SOA tracer in winter was likely associated with active biomass burning. Furthermore, we observed a close correlation of summer isoprene and α/ß-pinene SOA tracers with sulfate only in Shanghai, which verifies that biogenic SOA formation was facilitated by high concentration of sulfate. The ratios of MGA/MTLs and P/M were applied to reveal the impact of NOx on SOA formation and the aging degree of SOA, respectively. The MGA/MTLs ratios were comparable for the three cities, but much higher than the background value of this region as expected. The P/M ratios suggest that the aging degree of SOA in the YRD region was generally low, but the winter SOA were fresher than the summer SOA. Our research helps to understand pollution characteristics of SOA tracers in the urban agglomeration.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Humanos , Material Particulado/análise , Rios , Urbanização
4.
Int J Environ Health Res ; 32(1): 1-17, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32013546

RESUMO

Understanding the spatio-temporal characteristics of air pollutants is essential to improving air quality. One aspect is the question of whether green spaces can reduce air pollutant concentrations. However, previous studies on this issue have reported mixed results. This study analyzed the spatio-temporal characteristics of NO2, PM2.5 and O3 in Fujian Province, Southeast China in 2015. In order to reduce uncertainties in the conclusions drawn, the effects landscape metrics describing green spaces have on air pollutants have been analyzed using Pearson correlation analysis at six different spatial scales for the four seasons, considering the influence of meteorological conditions. The results show that PM2.5 and O3 are major pollutants whose relative importance varies with the seasons. Significant differences in pollutant concentrations were observed in suburban and urban areas, highlighting the importance of ensuring a reasonable spatial distribution of monitoring stations. Moreover, significant correlations between air pollutants and green space landscape patterns during the four seasons were found, revealing increased air pollutant concentrations with increasing landscape fragmentation and reduced connectivity and aggregation. This probably indicates that interconnected green spaces have the potential to improve air quality. Utilizing green space function regulations can alleviate NO2 and PM2.5 pollution effectively, but it is still difficult to reduce O3 concentrations because green spaces are likely to not only serve as sinks for O3, but can also promote O3 formation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental , Dióxido de Nitrogênio/análise , Parques Recreativos , Material Particulado/análise , Estações do Ano
5.
Huan Jing Ke Xue ; 41(12): 5336-5344, 2020 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-33374049

RESUMO

Based on data from industrial activities and environmental surveys in the six districts of Xiamen, the emission inventory of industrially sourced volatile organic compounds (VOCs) from eight industries in the six districts of Xiamen was calculated for 2019 by applying the emission factor analysis method. The spatial distribution pattern of VOC emission intensity in the six districts of Xiamen was analyzed. VOCs treatment technologies applied in the industries in the VOCs emission inventory were analyzed and countermeasures for improving VOC control were proposed based on the survey of the industries. The results showed that the total VOCs production and VOCs emission from industrial sources in Xiamen was 16027.88 t and 5514.58 t in 2019, respectively. Among them, the VOCs emission from Haicang, Tong'an, Xiang'an, and Jimei districts outside Xiamen Island were 1648.35, 2111.13, 667.52, and 750.48 t, respectively. Fewer VOC emissions from Xiamen Island were observed, which included 292.42 and 44.68 t from Huli and Siming districts, respectively. Except for the Huli District, the spatial distribution of emissions showed a spatial characteristic that the VOCs emission intensities outside Xiamen Island are higher than that of Xiamen Island. Among the eight industries in Xiamen, VOCs emissions were mainly from coating, printing, chemical, and rubber industries, which accounted for 51.21%, 20.18%, 13.63%, and 10.67%, respectively, of the total emissions. The analytic results of the VOCs waste gas disposal technique in Xiamen indicate that, from the perspective of source control, enterprises can effectively control the generation and emission of the VOCs at the source by using low (zero) raw materials. For the terminal disposal procedure, the actual disposal efficiency of UV photolysis/photocatalysis, low-temperature plasma, and biological methods are all lower than 80%, and that of the combined technique of adsorption and catalytic combustion, and the combustion method are both higher than 90%.

6.
Huan Jing Ke Xue ; 41(9): 4081-4087, 2020 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-33124289

RESUMO

Thirteen typical antibiotics in surface water of the Lianhua Reservoir were analyzed using HPLC/MS/MS to assess the pollution characteristics and risk levels. Ten antibiotics except for erythromycin, sulfadiazine, and sulfamethoxazole were detected in surface water and the total concentration of antibiotics varied between non-detectable (n.d.) and 925.26 ng ·L-1. Azithromycin had the highest concentration (n.d.-232.61 ng ·L-1) with the detection frequency of 75%, followed by enrofloxacin (n.d.-187.69 ng ·L-1), tetracycline (n.d.-155.05 ng ·L-1), and ciprofloxacin (n.d.-83.66 ng ·L-1) with the detection frequencies over 60%. The spatial distribution of antibiotics was as follows: total concentration of upstream (sampling point 1) > Aoxi River stream tributary (sampling point 2) > reservoir downstream (sampling point 3) > reservoir entrance (sampling point 4) > reservoir area (sampling point 5). The seasonal variations in the concentrations of antibiotics were evident; total concentrations in the dry season were significantly higher than those in the wet and normal seasons. The results of the environmental risk assessment indicated that ofloxacin, enrofloxacin, and ciprofloxacin pose significant risks to the environment. In the Lianhua Reservoir, ciprofloxacin showed high potential risk to the ecological environment, while the environmental risks of other antibiotics in the reservoir were below the medium level. The combined risk value of the antibiotics in the dry season was higher than that in the wet and normal seasons.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/análise , China , Monitoramento Ambiental , Medição de Risco , Estações do Ano , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 741: 140470, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886967

RESUMO

Chemical compositions of non-refractory submicron aerosol (NR-PM1) were measured via an Aerodyne Aerosol Chemical Speciation Monitor at the coastal city Xiamen during the 2017 BRICS summit from August 10 to September 10. Mean hourly concentration of NR-PM1 was 13.55 ± 8.83 µg m-3 during the study period, decreasing from 18.83 µg m-3 before-BRICS to 13.02 µg m-3 in BRCIS I and 8.42 µg m-3 in BRICS II. Positive matrix factor analyses resolved four organic aerosols (OA): a hydrocarbon-like OA (HOA, 14.78%), a cooking-related OA (COA, 28.21%), a biomass burning OA (BBOA, 18.00%), and an oxygenated OA (OOA, 39.22%). The contributions of local pollutants like nitrate and HOA reduced, while the proportions of sulfate and OOA increased during the control episodes. The diurnal patterns of NR-PM1 species and OA components in each episode were characterized. The results showed that BC, nitrate, COA, and HOA had peaks in the morning and evening, which became less obvious under the emission control. Moreover, the diurnal variations of all species in Ep 3 with emission control were much flatter due to the effect of transport. Backward trajectories analysis confirmed the long-range transport of air masses from the continent, which resulted in the high proportions of sulfate (43.69%) and OOA (50.28%) in Ep 3. Our study implies the significant effect of emission control on reducing primary pollutants, but the formation of particles during the long-range transport need to be paid more attention when set the air quality control strategies in coastal cities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...