Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Rice (N Y) ; 17(1): 43, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995403

RESUMO

BACKGROUND: Rice is one of the major staples that feeds about one half of the global populations, and it is important to identify the genetic loci for the traits related to yield improvement. Lodging will cause severe yield loss when it happens, and stem diameter has been characterized as an important trait for lodging resistance. However, most QTLs for stem diameter have not been finely dissected due to their sensitivity to environmental fluctuation. RESULT: In this study, we performed QTL analysis for stem diameter using populations derived from Nipponbare (NIP) and strong culm variety YYP1, and confirmed the single and combined effect of three major QTLs by recombinant inbred lines (RILs). Based on the QTL location, we found that qWS5 is a novel QTL not well characterized before. To finely dissect the novel locus, several recombinant heterogeneous inbred families (HIFs) were selected from the RILs for linkage analysis and their derived nearly isogenic lines (NILs) were subjected to detailed trait investigation throughout different years. The HIF-NILs strategy confined the QTL to about 380 kb region supported by repeated genotype and phenotype data, and it lays the foundation for QTL cloning in the future. In addition, introgression of the QTL to an elite japonica variety SD785 was performed by successive backcrossing, and it confirmed the value of qWS5 in increasing stem diameter and other agronomic traits during rice breeding. CONCLUSIONS: We prove that qWS5 is a novel QTL with relatively stable effect for stem diameter and the QTL can be finely mapped to small region by the HIF-NILs strategy. The result will facilitate the improvement of rice lodging resistance by molecular marker assisted selection breeding.

2.
Yi Chuan ; 45(9): 718-740, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731228

RESUMO

As one of the major staple crops, rice feeds more than one half of the world population. Due to increasing population and dramatic climate change, the rice varieties with higher yield performance and excellent overall agronomic performance should be developed. The raise of molecular design breeding concept provides opportunity to get new breakthrough for variety development, and it is important to clarify the efficient gene combination during actual breeding. In this review, we summarize the recent advances about rice variety improvement either by marker assisted selection (MAS) breeding or popular gene editing technique, which will be beneficial to understand different aspects of the molecular design breeding. We provide genetic views for the classical MAS application, including the genetic effect of key genes and their combinations, the recurrent genome recovery rate at different backcross generations, linkage drag and recombination selection. Moreover, we compare the breeding value of recently-developed molecular techniques, including the advantage of high-throughput genotyping and the way and effect of gene editing in creating useful traits. Considering the current status and actual demands of rice breeding, we raise the strategy to take advantages of both traditional breeding resources and popular molecular techniques, which might pave the way to optimize the process of molecular design breeding in future.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Agricultura , Produtos Agrícolas , Edição de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...