Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 386: 110779, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37879595

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) transplantation is a promising therapeutic strategy for cerebral ischemia/reperfusion (I/R) injury; however, the clinical outcome is barely satisfactory and demands further improvement. The present study aimed to investigate whether preconditioning of BMSCs by recombinant human growth differentiation factor 7 (rhGDF7) could enhance its therapeutic capacity against cerebral I/R injury. Mouse BMSCs and primary neurons were co-cultured and exposed to oxygen glucose deprivation/reperfusion (OGD/R) stimulation. To investigate the role of exosomal microRNA-369-3p (miR-369-3p), inhibitors, RNAi and the miR-369-3p antagomir were used. Meanwhile, mice were intravenously injected with rhGDF7-preconditioned BMSCs and then received cerebral I/R surgery. Markers of inflammation, oxidative stress and neural damage were evaluated. To inhibit AMP-activated protein kinase (AMPK), compound C was used in vivo and in vitro. Compared with cell-free transwell or vehicle-preconditioned BMSCs, rhGDF7-preconditioned BMSCs significantly prevented OGD/R-induced inflammation, oxidative stress and neural damage in vitro. Meanwhile, rhGDF7-preconditioned BMSCs could prevent I/R-induced cerebral inflammation and oxidative stress in vivo. Mechanistically, rhGDF7 preconditioning significantly increased exosomal miR-369-3p expression in BMSCs and then transferred exosomal miR-369-3p to primary neurons, where it bound to phosphodiesterase 4 D (Pde4d) 3'-UTR and downregulated PDE4D expression, thereby preventing I/R-induced inflammation, oxidative stress and neural damage through activating AMPK pathway. Our study identify GDF7 pretreatment as a promising adjuvant reagent to improve the therapeutic potency of BMSCs for cerebral I/R injury and ischemic stroke.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão , Camundongos , Humanos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , Inflamação/metabolismo , Traumatismo por Reperfusão/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/fisiologia
2.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 49(6): 687-696, 2020 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-33448171

RESUMO

OBJECTIVE: To investigate the mechanism of Chinese medicine Buyang Huanwu decoction (BYHWD) promoting neurogenesis and angiogenesis in ischemic stroke rats. METHODS: Male SD rats were randomly divided into sham operation group, model group, BYHWD group, antagonist group and antagonist control group with 14 rats in each. Focal cerebral ischemia was induced by occlusion of the right middle cerebral artery for 90 min with intraluminal filament and reperfusion for 14 d in all groups except sham operation group. BYHWD (13 g/kg) was administrated by gastrogavage in BYHWD group, antagonist group and antagonist control group at 24 h after modeling respectively, and BrdU (50 mg/kg) was injected intraperitoneally in all groups once a day for 14 consecutive days. miR-199a-5p antagomir or NC (10 nmol) was injected into the lateral ventricle at d5 after ischemia in antagonist and antagonist control groups, respectively. The neurological deficits were evaluated by the modified neurological severity score (mNSS) and the corner test, and the infract volume was measured by toluidine blue staining. Neurogenesis and angiogenesis were detected by immunofluorescence double labeling method. The expression level of miR-199a-5p was tested by real-time RT-PCR, and the protein expressions of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) were determined by Western blotting. RESULTS: BYHWD treatment significantly promoted the recovery of neurological function (P<0.05 or P<0.01), reduced the infarct volume (P<0.05), increased the number of BrdU+/DCX+, BrdU+/NeuN+ and BrdU+/vWF+ cells (all P<0.01), upregulated the expression of miR-199a-5p (P<0.01), and increased the protein expression of VEGF and BDNF at d14 after cerebral ischemia (all P<0.05). The above effects were reversed by intracerebroventricular injection of miR-199a-5p antagomir. CONCLUSIONS: Buyang Huanwu decoction promotes neurogenesis and angiogenesis in rats with cerebral ischemia, which may be related to increased protein expression of VEGF and BDNF through upregulating miR-199a-5p.


Assuntos
Medicamentos de Ervas Chinesas , AVC Isquêmico , MicroRNAs , Neurogênese , Regulação para Cima , Animais , Isquemia Encefálica/tratamento farmacológico , Proteína Duplacortina , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , AVC Isquêmico/tratamento farmacológico , Masculino , MicroRNAs/genética , Neurogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...