Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798547

RESUMO

BACKGROUND: There is growing evidence that pathogenic mutations do not fully explain hypertrophic (HCM) or dilated (DCM) cardiomyopathy phenotypes. We hypothesized that if a patient's genetic background was influencing cardiomyopathy this should be detectable as signatures in gene expression. We built a cardiomyopathy biobank resource for interrogating personalized genotype phenotype relationships in human cell lines. METHODS: We recruited 308 diseased and control patients for our cardiomyopathy stem cell biobank. We successfully reprogrammed PBMCs (peripheral blood mononuclear cells) into induced pluripotent stem cells (iPSCs) for 300 donors. These iPSCs underwent whole genome sequencing and were differentiated into cardiomyocytes for RNA-seq. In addition to annotating pathogenic variants, mutation burden in a panel of cardiomyopathy genes was assessed for correlation with echocardiogram measurements. Line-specific co-expression networks were inferred to evaluate transcriptomic subtypes. Drug treatment targeted the sarcomere, either by activation with omecamtiv mecarbil or inhibition with mavacamten, to alter contractility. RESULTS: We generated an iPSC biobank from 300 donors, which included 101 individuals with HCM and 88 with DCM. Whole genome sequencing of 299 iPSC lines identified 78 unique pathogenic or likely pathogenic mutations in the diseased lines. Notably, only DCM lines lacking a known pathogenic or likely pathogenic mutation replicated a finding in the literature for greater nonsynonymous SNV mutation burden in 102 cardiomyopathy genes to correlate with lower left ventricular ejection fraction in DCM. We analyzed RNA-sequencing data from iPSC-derived cardiomyocytes for 102 donors. Inferred personalized co-expression networks revealed two transcriptional subtypes of HCM. The first subtype exhibited concerted activation of the co-expression network, with the degree of activation reflective of the disease severity of the donor. In contrast, the second HCM subtype and the entire DCM cohort exhibited partial activation of the respective disease network, with the strength of specific gene by gene relationships dependent on the iPSC-derived cardiomyocyte line. ADCY5 was the largest hubnode in both the HCM and DCM networks and partially corrected in response to drug treatment. CONCLUSIONS: We have a established a stem cell biobank for studying cardiomyopathy. Our analysis supports the hypothesis the genetic background influences pathologic gene expression programs and support a role for ADCY5 in cardiomyopathy.

2.
PeerJ Comput Sci ; 9: e1653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077577

RESUMO

The diverse characteristics of heterogeneous data pose challenges in analyzing combined price and volume data. Therefore, appropriately handling heterogeneous financial data is crucial for accurate stock prediction. This article proposes a model that applies customized data processing methods tailored to the characteristics of different types of heterogeneous financial data, enabling finer granularity and improved feature extraction. By utilizing the structured multi-head attention mechanism, the model captures the impact of heterogeneous financial data on stock price trends by extracting data information from technical, financial, and sentiment indicators separately. Experimental results conducted on four representative individual stocks in China's A-share market demonstrate the effectiveness of the proposed method. The model achieves an average MAPE of 1.378%, which is 0.429% lower than the benchmark algorithm. Moreover, the backtesting return rate exhibits an average increase of 28.56%. These results validate that the customized preprocessing method and structured multi-head attention mechanism can enhance prediction accuracy by attending to different types of heterogeneous data individually.

3.
Stem Cell Res ; 72: 103218, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37804546

RESUMO

Idiopathic pulmonary arterial hypertension (IPAH) is a rare disease, with an estimated 500-1000 new cases diagnosed every year. A portion of these cases may be caused by mutations in the BMPR2 gene, suggesting a possible genetic component in the development of the disease. Here, we report two human induced pluripotent stem cell (iPSC) lines generated from IPAH patients. Both cell lines provide valuable insight into the molecular and cellular mechanisms of IPAH and can be used to further understand the disease.


Assuntos
Hipertensão Pulmonar , Células-Tronco Pluripotentes Induzidas , Humanos , Hipertensão Pulmonar/genética , Mutação
4.
Materials (Basel) ; 16(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36676505

RESUMO

Cement-based sensors include conductive fillers to achieve a sensing capability based on the piezoresistivity phenomenon, in which the electrical resistivity changes with strain. The microstructural characterisation of cement-based sensors can be obtained using a promising non-destructive technique, such as AC impedance spectroscopy (ACIS), which has been recently used by many researchers. This paper reviews the fundamental concepts of piezoresistivity and ACIS in addition to the comparison of equivalent circuit models of cement-based sensors found in the literature. These concepts include piezoresistivity theory, factors affecting piezoresistivity measurement, resistance measurement methodology, strain/damage sensing, causes of piezoresistivity, theories of conduction, AC impedance spectroscopy theory, and the equivalent circuit model. This review aims to provide a comprehensive guide for researchers and practitioners interested in exploring and applying different techniques to self-sensing concrete.

5.
Environ Res ; 214(Pt 4): 113975, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995228

RESUMO

Self-healing concrete is an innovative construction material designed to repair its cracks autogenously or autonomously. The self-healing effect reduces the need for maintenance and increases the longevity of concrete structures, bringing environmental and economic benefits. However, the developed methods to improve self-healing performance, e.g., incorporating advanced techniques or expensive chemical healing agents, significantly increase the cost of concrete manufacture. There is worldwide interest in using waste materials to reduce the cost of self-healing concrete, and a significant amount of studies have been performed on this topic. A review of research on waste-derived self-healing concrete is presented in this paper. The wastes were used in both autogenous and autonomous self-healing approaches, such as mineral admixture, bacteria-based technology, and engineered cementitious composite; different environmental conditions may significantly influence self-healing efficiency due to different reaction mechanisms. In general, waste materials could be reused to manufacture self-healing concrete if adopting appropriate mix design and treatment methods. Self-healing concrete made with various industrial wastes is an efficient way to reduce the manufacturing cost and promote its application in practice.


Assuntos
Resíduos Industriais , Reciclagem , Carbonato de Cálcio , Materiais de Construção , Resíduos
6.
Stem Cell Res ; 59: 102657, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34999423

RESUMO

LMNA-related dilated cardiomyopathy (LMNA-DCM) is caused by pathogenic variants in the LMNA gene and is characterized by left ventricular chamber enlargement, reduced systolic function, and arrhythmia. Here, we generated three human induced pluripotent stem cell (iPSC) lines from peripheral blood mononuclear cells (PBMCs) of three DCM patients carrying the same single heterozygous mutation, c.398 G > A, in LMNA. All lines exhibited normal iPSC morphology, expressed high levels of pluripotency markers, showed normal karyotypes, and could differentiate into the three germ layers. These patient-specific iPSC lines can serve as invaluable tools to model in vitro pathological mechanisms of LMNA-DCM.

7.
Stem Cell Res ; 57: 102605, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34856468

RESUMO

SCN5A gene loss-of-function mutations are commonly associated with Brugada syndrome, which represents a risk of lethal arrhythmias and sudden cardiac death. The present report describes the generation of two human induced pluripotent stem cell (iPSC) lines reprogrammed from two Brugada syndrome affected patients carrying SCN5A mutations, c.53506 G>A and c.2102 C>T, respectively. Pluripotency markers, karyotype stability, and differentiation capability into derivatives of the three germ layers were assessed and described in the present report. These lines can be used as a reliable cell model for Brugada syndrome investigations and characterization of leading cellular mechanisms.

8.
Polymers (Basel) ; 13(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34372103

RESUMO

An innovative beam concept made from hollow FRP tube with external flanges and filled with crumbed rubber concrete was investigated with respect to bending and shear. The performance of the rubberised-concrete-filled specimens was then compared with hollow and normal-concrete-filled tubes. A comparison between flanged and non-flanged hollow and concrete-filled tubes was also implemented. Moreover, finite element simulation was conducted to predict the fundamental behaviour of the beams. The results showed that concrete filling slightly improves bending performance but significantly enhances the shear properties of the beam. Adding 25% of crumb rubber in concrete marginally affects the bending and shear performance of the beam when compared with normal-concrete-filled tubes. Moreover, the stiffness-to-FRP weight ratio of a hollow externally flanged round tube is equivalent to that of a concrete-filled non-flanged round tube. The consideration of the pair-based contact surface between an FRP tube and infill concrete in linear finite element modelling predicted the failure loads within a 15% margin of difference.

9.
Asian Pac J Cancer Prev ; 22(3): 705-709, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773532

RESUMO

BACKGROUND: Peripheral neurotoxicity is common in patients with digestive malignancies receiving chemotherapy containing oxaliplatin, and there is still no effective drug to prevent or treat this complication. METHODS: Seventy-nine patients receiving chemotherapy containing oxaliplatin were included, and the relationship between chemotherapy regimens, cycles, and cumulative dose of oxaliplatin and peripheral neurotoxicity was analyzed. Patients were divided into two groups of control or intervention. Twenty-eight patients in the control group received routine chemotherapy care, and 51 patients in the intervention group underwent two-week exercise rehabilitation program. Patients' Functional Assessment of Cancer Therapy/Gynecologic Oncology Group - Neurotoxicity (FACT/GOG-Ntx), functional tests, and Brief Pain Inventory(BPI) scores as well as interference life scores were assessed before intervention and two weeks after the intervention. RESULTS: In the intervention group, 52.9% patients previously exercised regularly. The FOLFOX regimen was more common in peripheral neurotoxicity (73.4%), and the median oxaliplatin cycles for neurotoxicity was 9 (ranging from 1 to 16). The mean cumulative dose of oxaliplatin was 1080.02 ± 185.22 mg, both the cycles and cumulative dose were positively correlated with the occurrence of peripheral neurotoxicity. Compared with control, the scores of FACT/GOG-Ntx, functional tests, and BPI were significantly decreased in the intervention group (p < 0.05). CONCLUSION: Chemotherapy cycles and cumulative doses were in relation with OIN  , and exercise rehabilitation program could effectively alleviate OIN.
.


Assuntos
Antineoplásicos/efeitos adversos , Neoplasias do Sistema Digestório/tratamento farmacológico , Terapia por Exercício/métodos , Oxaliplatina/efeitos adversos , Doenças do Sistema Nervoso Periférico/reabilitação , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Capecitabina/efeitos adversos , Relação Dose-Resposta a Droga , Feminino , Fluoruracila/efeitos adversos , Humanos , Irinotecano/efeitos adversos , Leucovorina/efeitos adversos , Masculino , Pessoa de Meia-Idade , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/reabilitação , Compostos Organoplatínicos/efeitos adversos , Oxaloacetatos/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente
10.
Stem Cell Res ; 53: 102279, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33743363

RESUMO

Hypertrophic cardiomyopathy (HCM) is an inherited heart disease that can cause sudden cardiac death and heart failure. HCM often arises from mutations in sarcomeric genes, among which the MYBPC3 is the most frequently mutated. Here we generated two human induced pluripotent stem cell (iPSC) lines from a HCM patient who has a familial history of HCM and his daughter who carries the pathogenic non-coding mutation. All lines show the typical morphology of pluripotent cells, a high expression of pluripotency markers, normal karyotype, and in vitro capacity to differentiate into all three germ layers. These lines provide a valuable resource for studying the molecular basis of HCM and drug screening for HCM.


Assuntos
Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/genética , Heterozigoto , Humanos , Mutação
11.
Materials (Basel) ; 13(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872478

RESUMO

Concrete wastewater infrastructures are important to modern society but are susceptible to sulfuric acid attack when exposed to an aggressive environment. Fibre-reinforced mortar has been adopted as a promising coating and lining material for degraded reinforced concrete structures due to its unique crack control and excellent anti-corrosion ability. This paper aims to evaluate the performance of polyethylene (PE) fibre-reinforced calcium aluminate cement (CAC)-ground granulated blast furnace slag (GGBFS) blended strain-hardening mortar after sulfuric acid immersion, which represented the aggressive sewer environment. Specimens were exposed to 3% sulfuric acid solution for up to 112 days. Visual, physical and mechanical performance such as water absorption ability, sorptivity, compressive and direct tensile strength were evaluated before and after sulfuric acid attack. In addition, micro-structure changes to the samples after sulfuric acid attack were also assessed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) to further understand the deterioration mechanism. The results show that overall fibre-reinforced calcium aluminate cement (CAC)-based samples performed significantly better than fibre-reinforced ordinary Portland cement (OPC)-based samples as well as mortar samples in sulfuric acid solution in regard to visual observations, penetration depth, direct tensile strength and compressive reduction. Gypsum generation in the cementitious matrix of both CAC and OPC-based systems was the main reason behind the deterioration mechanism after acid attack exposure. Moreover, laboratory sulfuric acid testing has been proven for successfully screening the cementitious material against an acidic environment. This method can be considered to design the service life of concrete wastewater pipes.

12.
Sci Total Environ ; 746: 141182, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768782

RESUMO

Drinking water treatment sludge (DWTS) can be recycled into low-strength concrete blocks for construction use. The sodium sulfate resistance and leaching behaviours of the DWTS-derived blocks are investigated in this study. The experimental results show that the addition of DWTS degrades the sodium sulfate resistance of the concrete blocks, however CO2 curing compensates for such property, especially in the case of blocks incorporating 30% DWTS. The improvement can be attributed to the formation of crystalline CaCO3 during CO2 curing for microstructure refinement evidenced by X-ray Computed Tomography and Scanning Electron Microscopy. Leaching analyses show that Cu and Al concentrations increased with increasing DWTS content, and CO2 curing adversely increased the leachability of metals due to the decrease of pH, especially at early leaching stage. Nevertheless, the total leaching concentrations of Cu and Al after 60-day test is far below the prescribed limitations, regardless of samples subject to air curing or CO2 curing. In summary, sludge-derived blocks exposed to CO2 curing are safe and behave well in aggressive environments. Therefore, this study showcases a green technology that successfully recycling DWTS into value-added and durable concrete blocks with low environmental impacts.

13.
Curr Protoc Stem Cell Biol ; 54(1): e114, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32584494

RESUMO

We describe the procedure to isolate genomic DNA, RNA, and protein directly from cryopreserved induced pluripotent stem cell (iPSC) vials using commercially available solid-phase extraction kits, and we report the relationship between macromolecule yields and experimental and storage factors. Sufficient quantities of DNA, RNA, and protein are recoverable from as low as 1 million cryopreserved cells across 728 distinct iPSC lines suitable for whole-genome sequencing, RNA sequencing, and mass spectrometry experiments. Nucleic acids extracted from iPSC stocks cryopreserved up to 4 years maintain sufficient quantity and integrity for downstream analysis with minimal genomic DNA fragmentation. An expected positive correlation exists between cell count and DNA or RNA yield, with comparable yields recovered between cells across different cryostorage timespans. This article provides an effective way to simultaneously isolate iPSC biomolecules for multi-omics investigations. © 2020 Wiley Periodicals LLC. Basic Protocol 1: QIAshredder and AllPrep DNA/RNA/protein mini kit extraction and subsequent DNA quantification and quality analysis Basic Protocol 2: Broad-range RNA quantification and quality assay using QuBit 4 Fluorometer and associated kits.


Assuntos
Criopreservação , DNA/isolamento & purificação , Genômica , Ensaios de Triagem em Larga Escala/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas/isolamento & purificação , RNA/isolamento & purificação , Fluorometria , Humanos , Modelos Lineares
14.
J Environ Manage ; 262: 110352, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250823

RESUMO

The management of abundant drinking water treatment sludge (DWTS) in landfill remains an important issue. The reuse of DWTS as construction material could contribute to the development of greener concrete product and to mitigating the detrimental environment effect from excessive production of DWTS. This paper investigates the potential of using DWTS as sand replacement in Concrete Paving Blocks (CPB). Five CPB mixtures were designed and the replacement ratios of sand by DWTS were 0%, 5%, 10%, 15%, and 20%, by weight. Properties of CPB such as compressive strength, water absorption, abrasion resistance, sulfate attack and metal leachability were determined. The results indicated that above 10% of DWTS, the replacement was detrimental to such properties of the CPB. Microstructure analysis proved the addition of DWTS could result in ettringite formation and the interfacial transition zone (ITZ) between the cement matrix and DWTS was more porous than that of sand. In addition, the metal leachability test of CPB demonstrated that the addition of high-copper DWTS into CPB was safe.


Assuntos
Água Potável , Purificação da Água , Materiais de Construção , Esgotos , Instalações de Eliminação de Resíduos
15.
Sci Rep ; 8(1): 4286, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523826

RESUMO

Despite preliminary confidence on biosafety of polymer coated iron oxide nanoparticles (SPIONs), toxicity concerns have hampered their clinical translation. SPIONs toxicity is known to be due to catalytic activity of their surface and release of toxic Fe ions originating from the core biodegradation, leading to the generation of reactive oxygen species (ROS). Here, we hypothesized that a double-layer polymeric corona comprising of dextran as an interior, and polyethylene glycol (PEG) as an exterior layer better shields the core SPIONs. We found that ROS generation was cell specific and depended on SPIONs concentration, although it was reduced by sufficient PEG immobilization or 100 µM deferoxamine. 24 h following injection, PEGylated samples showed reduction of biodistribution in liver, heterogenous biodistribution profile in spleen, and no influence on NPs blood retention. Sufficient surface masking or administration of deferoxamine could be beneficial strategies in designing and clinical translation of future biomedical SPIONs.


Assuntos
Dextranos/química , Ferro/farmacocinética , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Animais , Células Cultivadas , Coloides/química , Desferroxamina/farmacologia , Liberação Controlada de Fármacos , Feminino , Compostos Férricos/química , Ferro/toxicidade , Quelantes de Ferro/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Nanopartículas Metálicas/efeitos adversos , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Distribuição Tecidual
16.
Stem Cell Reports ; 10(2): 422-435, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29398480

RESUMO

Non-human primates (NHPs) can serve as a human-like model to study cell therapy using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). However, whether the efficacy of NHP and human iPSC-CMs is mechanistically similar remains unknown. To examine this, RNU rats received intramyocardial injection of 1 × 107 NHP or human iPSC-CMs or the same number of respective fibroblasts or PBS control (n = 9-14/group) at 4 days after 60-min coronary artery occlusion-reperfusion. Cardiac function and left ventricular remodeling were similarly improved in both iPSC-CM-treated groups. To mimic the ischemic environment in the infarcted heart, both cultured NHP and human iPSC-CMs underwent 24-hr hypoxia in vitro. Both cells and media were collected, and similarities in transcriptomic as well as metabolomic profiles were noted between both groups. In conclusion, both NHP and human iPSC-CMs confer similar cardioprotection in a rodent myocardial infarction model through relatively similar mechanisms via promotion of cell survival, angiogenesis, and inhibition of hypertrophy and fibrosis.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Transplante de Células-Tronco , Animais , Diferenciação Celular , Hipóxia Celular/fisiologia , Sobrevivência Celular/fisiologia , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/citologia , Primatas , Ratos
17.
Stem Cells ; 36(2): 265-277, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29086457

RESUMO

The ability to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes (CMs) makes them an attractive source for repairing injured myocardium, disease modeling, and drug testing. Although current differentiation protocols yield hPSC-CMs to >90% efficiency, hPSC-CMs exhibit immature characteristics. With the goal of overcoming this limitation, we tested the effects of varying passive stretch on engineered heart muscle (EHM) structural and functional maturation, guided by computational modeling. Human embryonic stem cells (hESCs, H7 line) or human induced pluripotent stem cells (IMR-90 line) were differentiated to hPSC-derived cardiomyocytes (hPSC-CMs) in vitro using a small molecule based protocol. hPSC-CMs were characterized by troponin+ flow cytometry as well as electrophysiological measurements. Afterwards, 1.2 × 106 hPSC-CMs were mixed with 0.4 × 106 human fibroblasts (IMR-90 line) (3:1 ratio) and type-I collagen. The blend was cast into custom-made 12-mm long polydimethylsiloxane reservoirs to vary nominal passive stretch of EHMs to 5, 7, or 9 mm. EHM characteristics were monitored for up to 50 days, with EHMs having a passive stretch of 7 mm giving the most consistent formation. Based on our initial macroscopic observations of EHM formation, we created a computational model that predicts the stress distribution throughout EHMs, which is a function of cellular composition, cellular ratio, and geometry. Based on this predictive modeling, we show cell alignment by immunohistochemistry and coordinated calcium waves by calcium imaging. Furthermore, coordinated calcium waves and mechanical contractions were apparent throughout entire EHMs. The stiffness and active forces of hPSC-derived EHMs are comparable with rat neonatal cardiomyocyte-derived EHMs. Three-dimensional EHMs display increased expression of mature cardiomyocyte genes including sarcomeric protein troponin-T, calcium and potassium ion channels, ß-adrenergic receptors, and t-tubule protein caveolin-3. Passive stretch affects the structural and functional maturation of EHMs. Based on our predictive computational modeling, we show how to optimize cell alignment and calcium dynamics within EHMs. These findings provide a basis for the rational design of EHMs, which enables future scale-up productions for clinical use in cardiovascular tissue engineering. Stem Cells 2018;36:265-277.


Assuntos
Biologia Computacional/métodos , Miocárdio/citologia , Linhagem Celular , Citometria de Fluxo , Humanos , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Engenharia Tecidual/métodos
18.
Biomed Opt Express ; 8(10): 4652-4662, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29082092

RESUMO

Quantitative phase imaging enables precise characterization of cellular shape and motion. Variation of cell volume in populations of cardiomyocytes can help distinguish their types, while changes in optical thickness during beating cycle identify contraction and relaxation periods and elucidate cell dynamics. Parameters such as characteristic cycle shape, beating frequency, duration and regularity can be used to classify stem-cell derived cardiomyocytes according to their health and, potentially, cell type. Unlike classical patch-clamp based electrophysiological characterization of cardiomyocytes, this interferometric approach enables rapid and non-destructive analysis of large populations of cells, with longitudinal follow-up, and applications to tissue regeneration, personalized medicine, and drug testing.

19.
J Am Coll Cardiol ; 68(19): 2086-2096, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27810048

RESUMO

BACKGROUND: Brugada syndrome (BrS), a disorder associated with characteristic electrocardiogram precordial ST-segment elevation, predisposes afflicted patients to ventricular fibrillation and sudden cardiac death. Despite marked achievements in outlining the organ level pathophysiology of the disorder, the understanding of human cellular phenotype has lagged due to a lack of adequate human cellular models of the disorder. OBJECTIVES: The objective of this study was to examine single cell mechanism of Brugada syndrome using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS: This study recruited 2 patients with type 1 BrS carrying 2 different sodium voltage-gated channel alpha subunit 5 variants as well as 2 healthy control subjects. We generated iPSCs from their skin fibroblasts by using integration-free Sendai virus. We used directed differentiation to create purified populations of iPSC-CMs. RESULTS: BrS iPSC-CMs showed reductions in inward sodium current density and reduced maximal upstroke velocity of action potential compared with healthy control iPSC-CMs. Furthermore, BrS iPSC-CMs demonstrated increased burden of triggered activity, abnormal calcium (Ca2+) transients, and beating interval variation. Correction of the causative variant by genome editing was performed, and resultant iPSC-CMs showed resolution of triggered activity and abnormal Ca2+ transients. Gene expression profiling of iPSC-CMs showed clustering of BrS compared with control subjects. Furthermore, BrS iPSC-CM gene expression correlated with gene expression from BrS human cardiac tissue gene expression. CONCLUSIONS: Patient-specific iPSC-CMs were able to recapitulate single-cell phenotype features of BrS, including blunted inward sodium current, increased triggered activity, and abnormal Ca2+ handling. This novel human cellular model creates future opportunities to further elucidate the cellular disease mechanism and identify novel therapeutic targets.


Assuntos
Síndrome de Brugada/genética , Regulação da Expressão Gênica , Sistema de Condução Cardíaco/fisiopatologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , RNA/genética , Adolescente , Adulto , Síndrome de Brugada/metabolismo , Síndrome de Brugada/patologia , Diferenciação Celular , Eletrocardiografia , Genótipo , Sistema de Condução Cardíaco/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/biossíntese , Linhagem , Fenótipo , Reação em Cadeia da Polimerase , Adulto Jovem
20.
Stem Cell Res Ther ; 7(1): 84, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296220

RESUMO

BACKGROUND: Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option for MI treatment. Adipose tissue has proven to serve as a rich source of stem cells (ADSCs). Taking into account the different morphogenesis, anatomy, and physiology of adipose tissue, we hypothesized that ADSCs from different adipose tissue depots may exert a diverse multipotency and cardiogenic potential. METHODS: The omental, pericardial, and epicardial adipose tissue samples were obtained from organ donors and patients undergoing heart transplantation at our institution. Human foreskin fibroblasts were used as the control group. Isolated ADSCs were analyzed for adipogenic and osteogenic differentiation capacity and proliferation potential. The immunophenotype and constitutive gene expression of alkaline phosphatase (ALP), GATA4, Nanog, and OCT4 were analyzed. DNA methylation inhibitor 5-azacytidine was exposed to the cells to stimulate the cardiogenesis. Finally, reprogramming towards cardiomyocytes was initiated with exogenous overexpression of seven transcription factors (ESRRG, GATA4, MEF2C, MESP1, MYOCD, TBX5, ZFPM2) previously applied successfully for fibroblast transdifferentiation toward cardiomyocytes. Expression of cardiac troponin T (cTNT) and alpha-actinin (Actn2) was analyzed 3 weeks after initiation of the cardiac differentiation. RESULTS: The multipotent properties of isolated plastic adherent cells were confirmed with expression of CD29, CD44, CD90, and CD105, as well as successful differentiation toward adipocytes and osteocytes; with the highest osteogenic and adipogenic potential for the epicardial and omental ADSCs, respectively. Epicardial ADSCs demonstrated a lower doubling time as compared with the pericardium and omentum-derived cells. Furthermore, epicardial ADSCs revealed higher constitutive expression of ALP and GATA4. Increased Actn2 and cTNT expression was observed after the transduction of seven reprogramming factors, with the highest expression in the epicardial ADSCs, as compared with the other ADSC subtypes and fibroblasts. CONCLUSIONS: Human epicardial ADSCs revealed a higher cardiomyogenic potential as compared with the pericardial and omental ADSC subtypes as well as the fibroblast counterparts. Epicardial ADSCs may thus serve as the valuable subject for further studies on more effective methods of adult stem cell differentiation toward cardiomyocytes.


Assuntos
Adipócitos/citologia , Omento/citologia , Pericárdio/citologia , Células-Tronco/citologia , Actinina/genética , Actinina/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adulto , Idoso , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Azacitidina/farmacologia , Biomarcadores/metabolismo , Transdiferenciação Celular , Metilação de DNA/efeitos dos fármacos , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Expressão Gênica , Transplante de Coração , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Omento/efeitos dos fármacos , Omento/metabolismo , Osteócitos/citologia , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Pericárdio/efeitos dos fármacos , Pericárdio/metabolismo , Cultura Primária de Células , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fatores de Transcrição/farmacologia , Troponina T/genética , Troponina T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...