Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903693

RESUMO

Nowadays, magnetoelectric nanomaterials are on their way to finding wide applications in biomedicine for various cancer and neurological disease treatment, which is mainly restricted by their relatively high toxicity and complex synthesis. This study for the first time reports novel magnetoelectric nanocomposites of CoxFe3-xO4-BaTiO3 series with tuned magnetic phase structures, which were synthesized via a two-step chemical approach in polyol media. The magnetic CoxFe3-xO4 phases with x = 0.0, 0.5, and 1.0 were obtained by thermal decomposition in triethylene glycol media. The magnetoelectric nanocomposites were synthesized by the decomposition of barium titanate precursors in the presence of a magnetic phase under solvothermal conditions and subsequent annealing at 700 °C. X-ray diffraction revealed the presence of both spinel and perovskite phases after annealing with average crystallite sizes in the range of 9.0-14.5 nm. Transmission electron microscopy data showed two-phase composite nanostructures consisting of ferrites and barium titanate. The presence of interfacial connections between magnetic and ferroelectric phases was confirmed by high-resolution transmission electron microscopy. Magnetization data showed expected ferrimagnetic behavior and σs decrease after the nanocomposite formation. Magnetoelectric coefficient measurements after the annealing showed non-linear change with a maximum of 89 mV/cm*Oe with x = 0.5, 74 mV/cm*Oe with x = 0, and a minimum of 50 mV/cm*Oe with x = 0.0 core composition, that corresponds with the coercive force of the nanocomposites: 240 Oe, 89 Oe and 36 Oe, respectively. The obtained nanocomposites show low toxicity in the whole studied concentration range of 25-400 µg/mL on CT-26 cancer cells. The synthesized nanocomposites show low cytotoxicity and high magnetoelectric effects, therefore they can find wide applications in biomedicine.

2.
Pharmaceutics ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36678755

RESUMO

Redox-responsive and magnetic nanomaterials are widely used in tumor treatment separately, and while the application of their combined functionalities is perspective, exactly how such synergistic effects can be implemented is still unclear. This report investigates the internalization dynamics of magnetic redox-responsive nanoparticles (MNP-SS) and their cytotoxicity toward PC-3 and 4T1 cell lines. It is shown that MNP-SS synthesized by covalent grafting of polyethylene glycol (PEG) on the magnetic nanoparticle (MNP) surface via SS-bonds lose their colloidal stability and aggregate fully in a solution containing DTT, and partially in conditioned media, whereas the PEGylated MNP (MNP-PEG) without S-S linker control remains stable under the same conditions. Internalized MNP-SS lose the PEG shell more quickly, causing enhanced magnetic core dissolution and thus increased toxicity. This was confirmed by fluorescence microscopy using MNP-SS dual-labeled by Cy3 via labile disulfide, and Cy5 via a rigid linker. The dyes demonstrated a significant difference in fluorescence dynamics and intensity. Additionally, MNP-SS demonstrate quicker cellular uptake compared to MNP-PEG, as confirmed by TEM analysis. The combination of disulfide bonds, leading to faster dissolution of the iron oxide core, and the high-oxidative potential Fe3+ ions can synergically enhance oxidative stress in comparison with more stable coating without SS-bonds in the case of MNP-PEG. It decreases the cancer cell viability, especially for the 4T1, which is known for being sensitive to ferroptosis-triggering factors. In this work, we have shown the effect of redox-responsive grafting of the MNP surface as a key factor affecting MNP-internalization rate and dissolution with the release of iron ions inside cancer cells. This kind of synergistic effect is described for the first time and can be used not only in combination with drug delivery, but also in treatment of tumors responsive to ferroptosis.

3.
Sensors (Basel) ; 21(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502676

RESUMO

The article presents the results of experimental studies of multilayer nanostructures of magnetic straintronics formed by magnetron sputtering on a 100 mm silicon wafer. The object of the study is two types of nanostructures: Ta/FeNiCo/CoFe/Ta and Ta/FeNi/CoFe/Ta, differing in the ratio of magnetic layers. The magnetic and magnetoresistive characteristics of multilayer nanostructures under varying mechanical loads are studied both on a 100 mm wafer and in the form of 4 × 20 mm2 samples of two types. The first, where the axis of easy magnetization is directed along the long side of the sample, and the second, where the axis of easy magnetization is a tilt at 45°. Based on the obtained data, the conclusions about the practical application of these nanostructures in magnetic straintronics elements are drawn.

4.
Sensors (Basel) ; 21(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33803044

RESUMO

Spin-dependent tunneling structures are widely used in many spintronic devices and sensors. This paper describes the magnetic tunnel junction (MTJ) characteristics caused by the inhomogeneous magnetic field of ferromagnetic layers. The extremely oblate magnetic ellipsoids have been used to mimic these layers. The strong effect of an inhomogeneous magnetic field on the magnetoresistive layers' interaction was demonstrated. The magnetostatic coupling coefficient is also calculated.

5.
Nanomaterials (Basel) ; 10(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825748

RESUMO

Heterodimeric nanoparticles comprising materials with different functionalities are of great interest for fundamental research and biomedical/industrial applications. In this work, Fe3O4-Au nano-heterostructures were synthesized by a one-step thermal decomposition method. The hybrid nanoparticles comprise a highly crystalline 12 nm magnetite octahedron decorated with a single noble metal sphere of 6 nm diameter. Detailed analysis of the nanoparticles was performed by UV-visible spectroscopy, magnetometry, calorimetry and relaxometry studies. The cytotoxic effect of the nanoparticles in the human hepatic cell line Huh7 and PLC/PRF/5-Alexander was also assessed. These Fe3O4-Au bifunctional nanoparticles showed no significant cytotoxicity in these two cell lines. The nanoparticles showed a good theranostic potential for liver cancer treatment, since the r2 relaxivity (166.5 mM-1·s-1 and 99.5 mM-1·s-1 in water and HepG2 cells, respectively) is higher than the corresponding values for commercial T2 contrast agents and the Specific Absorption Rate (SAR) value obtained (227 W/gFe) is enough to make them suitable as heat mediators for Magnetic Fluid Hyperthermia. The gold counterpart can further allow the conjugation with different biomolecules and the optical sensing.

6.
Nano Converg ; 7(1): 17, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32424769

RESUMO

Iron oxide nanoparticles (IONs) are frequently used in various biomedical applications, in particular as magnetic resonance imaging contrast agents in liver imaging. Indeed, number of IONs have been withdrawn due to their poor clinical performance. Yet comprehensive understanding of their interactions with hepatocytes remains relatively limited. Here we investigated how iron oxide nanocubes (IO-cubes) and clusters of nanocubes (IO-clusters) affect distinct human hepatic cell lines. The viability of HepG2, Huh7 and Alexander cells was concentration-dependently decreased after exposure to either IO-cubes or IO-clusters. We found similar cytotoxicity levels in three cell lines triggered by both nanoparticle formulations. Our data indicate that different expression levels of Bcl-2 predispose cell death signaling mediated by nanoparticles. Both nanoparticles induced rather apoptosis than autophagy in HepG2. Contrary, IO-cubes and IO-clusters trigger distinct cell death signaling events in Alexander and Huh7 cells. Our data clarifies the mechanism by which cubic nanoparticles induce autophagic flux and the mechanism of subsequent toxicity. These findings imply that the cytotoxicity of ION-based contrast agents should be carefully considered, particularly in patients with liver diseases.

7.
J Control Release ; 307: 368-378, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31247280

RESUMO

Developing nanocarriers that accumulate in targeted organs and are harmlessly eliminated still remains a big challenge. Nanoparticles (NP) biodistribution is governed by their size, composition, surface charge and coverage. The current thinking in bionanotechnology is that renal clearance is limited by glomerular basement membrane pore size (≈6 nm), although there is a growing evidence that NP exceeding the threshold can also be excreted with urine. Here we compare biodistribution of PEGylated 140 nm iron oxide cubes and clusters with a special focus on renal accumulation and excretion. Atomic emission spectroscopy, fluorescent microscopy and magnetic resonance imaging revealed rapid and transient accumulation of magnetic NP in kidney. Using intravital microscopy we tracked in real time NP translocation from peritubular capillaries to basal compartment of tubular cells and subsequent excretion to the lumen within 60 min after systemic administration. Transmission electron microscopy revealed persistence of intact full-sized NP in urine 2 h post injection. The results suggest that translocation through peritubular endothelium to tubular epithelial cells is an alternative mechanism of renal clearance enabling excretion of NP above glomerular cut-off size.


Assuntos
Portadores de Fármacos/administração & dosagem , Óxido Ferroso-Férrico/administração & dosagem , Rim/metabolismo , Nanopartículas/administração & dosagem , Animais , Células Cultivadas , Portadores de Fármacos/farmacocinética , Células Epiteliais/metabolismo , Feminino , Óxido Ferroso-Férrico/farmacocinética , Humanos , Microscopia Intravital , Rim/diagnóstico por imagem , Rim/ultraestrutura , Imageamento por Ressonância Magnética , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanopartículas/ultraestrutura , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...