Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17041, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426135

RESUMO

Вiotic factors may be the driving force of plastic fragmentation along with abiotic factors. Since understanding the processes of biodegradation and biological depolymerization of plastic is important, a new methodological approach was proposed in this study to investigate the role of marine invertebrate digestive enzymes in plastic biodegradation. The aim of this study is to evaluate the possibility of enzymatic biodegradation of polyethylene fragments in the digestive gland homogenate of marine invertebrates differing in their feeding type (Strongylocentrotus nudus, Patiria pectinifera, Mizuhopecten yessoensis). Significant changes are found in the functional groups of the polymer after 3 days of incubation in the digestive gland homogenates of the studied marine invertebrates. A significant increase in the calculated CI (carbonyl index) and COI (сarbon-oxygen index) indices compared to the control sample was observed. The results suggest that digestive enzymes of studied organisms may play an important role in the biogeochemical cycling of plastic.


Assuntos
Polietileno , Polietileno/química , Biodegradação Ambiental
2.
Toxics ; 11(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37755791

RESUMO

Expanded polystyrene (EPS) is a major component of plastic debris in the environment, including coastal and littoral zones. EPS is widely used in various industries including fish farming and aquaculture, which poses a serious potential threat not only to cultured hydrobionts but also to all living organisms, including humans. This paper presents the results of experimental studies on the effects of EPS (0.024 m2/L) on marine mollusks Mytilus trossulus and Tegula rustica, which are typical inhabitants of the upper littoral of Peter the Great Bay (Sea of Japan), belonging to different systematic groups and differing in the type of nutrition. The results of biochemical marker analysis showed the development of oxidative stress processes. Thus, increasing malondialdehyde content relative to control values was registered in the digestive glands of M. trossulus and T. rustica. In the cells of the digestive glands of M. trossulus, integral antioxidant activity decreased more than 1.5 times compared with that of the control. The change in the concentration of protein carbonyls was unchanged in M. trossulus, whereas in T. rustica, there was a 1.5-fold increase. EPS exposure also resulted in significant DNA damage in the studied mollusks-the damage level increased 2.5-fold in M. trossulus and 1.5-fold in T. rustica relative to the control, indicating the genotoxic potential of EPS litters.

3.
Biology (Basel) ; 12(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37372122

RESUMO

Marine bivalves belonging to the Mytilidae and Pectinidae Families were used in this research. The specific objectives of this study were: to determine the Fatty Acids (FAs) of mitochondrial gill membranes in bivalves with different lifespans, belonging to the same family, and to calculate their peroxidation index; to compare the levels of ROS generation, malondialdehyde (MDA), and protein carbonyls in the mitochondria of gills, in vitro, during the initiation of free-radical oxation; to investigate whether the FAs of mitochondria gill membranes affect the degree of their oxidative damage and the maximum lifespan of species (MLS). The qualitative membrane lipid composition was uniform in the studied marine bivalves, regardless of their MLS. In terms of the quantitative content of individual FAs, the mitochondrial lipids differed significantly. It is shown that lipid matrix membranes of the mitochondria of long-lived species are less sensitive to in vitro-initiated peroxidation compared with the medium and short-lived species. The differences in MLS are related to the peculiarities of FAs of mitochondrial membrane lipids.

4.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175949

RESUMO

The marine and ocean water pollution with different-sized plastic waste poses a real threat to the lives of the next generations. Plastic, including microplastics, is found in all types of water bodies and in the organisms that live in them. However, given the chemical diversity of plastic particles, data on their toxicity are currently incomplete. Moreover, it is clear that different organisms, depending on their habitat and feeding habits, are at different risks from plastic particles. Therefore, we performed a series of experiments on feeding the gastropod scraping mollusk Littorina brevicula with two types of polymeric particles-polymethylmethacrylate (PMMA) and polytetrafluoroethylene (PTFE)-using a special feeding design. In the PMMA-exposed group, changes in gastrointestinal biochemical parameters such as increases in malondialdehyde (MDA) and protein carbonyls (PC) were detected, indicating the initiation of oxidative stress. Similarly, a comet assay showed an almost twofold increase in DNA damage in digestive gland cells compared to the control group. In mollusks fed with PTFE-containing food, no similar changes were recorded.


Assuntos
Gastrópodes , Vinca , Poluentes Químicos da Água , Animais , Plásticos/química , Polimetil Metacrilato , Politetrafluoretileno , Vinca/metabolismo , Exposição Dietética , Poluentes Químicos da Água/toxicidade , Gastrópodes/metabolismo , Moluscos/metabolismo
5.
Environ Sci Pollut Res Int ; 28(24): 30986-30992, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33594558

RESUMO

The ability of Pectinidae to accumulate heavy metals and store them in their tissues allows the use of scallops for biomonitoring marine pollution. High molecular weight metallothionein (MT)-like proteins (MTlps) play a central role in this process. Two major MTlps (72 and 43 kDa) have been identified in the digestive glands of Mizuhopecten yessoensis (Yesso scallop). These proteins have a very high affinity for the heavy metals cadmium, cobalt, and caesium. Additionally, these proteins can be deposited in large quantities in the digestive glands of this mollusc. It has been shown that 72 kDa MTlp is the main stress-response protein in areas polluted with cadmium or radioactive metals. Monitoring the amounts of MTlps in the digestive glands of the scallop M. yessoensis in areas with different anthropogenic pollutants has shown that these proteins are reliable biological markers of heavy-metal pollution in the marine environment.


Assuntos
Metalotioneína , Pectinidae , Animais , Cádmio , Alimentos Marinhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...