Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 22(15): 18290-8, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25089449

RESUMO

We theoretically demonstrate that nanocomposites made of colloidal semiconductor quantum dot monolayers placed between metal nanoparticle monolayers can function as multilayer hyperbolic metamaterials. Depending on the thickness of the spacer between the quantum dot and nanoparticle layers, the effective permittivity tensor of the nanocomposite is shown to become indefinite, resulting in increased photonic density of states and strong enhancement of quantum dot luminescence. This explains the results of recent experiments [T. Ozel et al., ACS Nano 5, 1328 (2011)] and confirms that hyperbolic metamaterials are capable of increasing the radiative decay rate of emission centers inside them. The proposed theoretical framework can also be used to design quantum-dot/nanoplasmonic composites with optimized luminescence enhancement.

2.
Opt Lett ; 36(18): 3548-50, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21931386

RESUMO

An on-chip waveguide-based source of entangled photons capable of switching between generating time-energy entangled and hyperentangled (entangled in both time energy and polarization) photon pairs is proposed. The switching can be done all-optically by rotating the pump polarization. The source is based on multichannel phase matching in Bragg reflection waveguides achieved by engineering the Fresnel reflection of photonic bandgap claddings for differently polarized modes. Analytical results are confirmed in fully vectorial numerical simulations.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(4 Pt 2): 046602, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18517745

RESUMO

Normal-incidence transmission and dispersion properties of optical multilayers and one-dimensional stepwise potential barriers in the nontunneling regime are analytically investigated. The optical paths of every constituent layer in a multilayer structure, as well as the parameters of every step of the stepwise potential barrier, are constrained by a generalized quarter-wave condition. No other restrictions on the structure geometry are imposed, i.e., the layers are arranged arbitrarily. We show that the density of states (DOS) spectra of the multilayer or barrier in question are subject to integral conservation rules similar to the Barnett-Loudon sum rule but occurring within a finite frequency or energy interval. In the optical case, these frequency intervals are regular. For the potential barriers, only nonperiodic energy intervals can be present in the spectrum of any given structure, and only if the parameters of constituent potential steps are properly chosen. The integral conservation relations derived analytically have also been verified numerically. The relations can be used in dispersion-engineered multilayer-based devices, e.g., ultrashort pulse compressors or ultracompact optical delay lines, as well as to design multiple-quantum-well electronic heterostructures with engineered DOS.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(3 Pt 2): 036609, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17500811

RESUMO

The compression of femtosecond laser pulses by linear quasiperiodic and periodic photonic multilayer structures is studied both experimentally and theoretically. We compare the compression performance of a Fibonacci and a periodic structure with similar total thickness and the same number of layers, and find the performance to be higher in the Fibonacci case, as predicted by numerical simulation. This compression enhancement takes place due to the larger group velocity dispersion at a defect resonance of the transmission spectrum of the Fibonacci structure. We demonstrate that the Fibonacci structure with the thickness of only 2.8 microm can compress a phase-modulated laser pulse by up to 30%. The possibility for compression of laser pulses with different characteristics in a single multilayer is explored. The operation of the compressor in the reflection regime has been modeled, and we show numerically that the reflected laser pulse is subjected to real compression: not only does its duration decrease but also its amplitude rises.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(3 Pt 2B): 036621, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11909299

RESUMO

Wave propagation through a subclass of deterministic nonperiodic media, namely, fractal Cantor multilayer structures are investigated theoretically as well as experimentally. Transmission spectra of Cantor structures are found to have two distinctive properties (scalability and sequential splitting) closely related to the geometrical peculiarities of the multilayers. A systematic correlation between structural self-similarity and spectral regularities of Cantor multilayers is established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA