Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Agric Food Chem ; 72(8): 3884-3893, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38375801

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is one of the most valuable herbicide targets due to its unique biological functions. In search of HPPD inhibitors with promising biological performance, we designed and synthesized a series of novel tetrazolamide-benzimidazol-2-ones using a structure-based drug design strategy. Among the synthesized compounds, 1-(2-chlorobenzyl)-3-methyl-N-(1-methyl-1H-tetrazol-5-yl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-4-carboxamide, 25, IC50 = 10 nM, was identified to be the most outstanding HPPD inhibitor, which showed more than 36-fold increased Arabidopsis thaliana HPPD (AtHPPD) inhibition potency than mesotrione (IC50 = 363 nM). Our AtHPPD-25 complex indicated that one nitrogen atom on the tetrazole ring and the oxygen atom on the amide group formed a classical bidentate chelation interaction with the metal ion, the benzimidazol-2-one ring created a tight π-π stacking interaction with Phe381 and Phe424, and some hydrophobic interactions were also found between the ortho-Cl-benzyl group and surrounding residues. Compound 32 showed more than 80% inhibition against all four tested weeds at 150 g ai/ha by the postemergence application. Our results indicated that the tetrazolamide-benzimidazol-2-one scaffold may be a new lead structure for herbicide discovery.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Arabidopsis , Benzimidazóis , Herbicidas , Estrutura Molecular , Relação Estrutura-Atividade , 4-Hidroxifenilpiruvato Dioxigenase/química , Herbicidas/farmacologia , Herbicidas/química , Arabidopsis/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
2.
Org Lett ; 26(9): 1813-1818, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38386925

RESUMO

Herein, we present a novel Catellani-type reaction that employed aryl-thianthrenium salts as aryl substrates to trigger the subsequent palladium/norbornene cooperatively catalyzed progress. This strategy can achieve site-selective C-H difunctionalization of aryl compounds without directing groups or a known initiating reagent. A series of functionalized syntheses of bioactive molecules further demonstrated the potential of this strategy.

3.
Aquat Toxicol ; 261: 106628, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37451186

RESUMO

Information on transgenerational effects of cadmium (Cd) and zinc (Zn) within hour of exposure is scarce. To the end, larvae of marine medaka Oryzias melastigma at 0 day-post-hatching (dph) were subjected to LC50 for 96-h of Cd or Zn for 0.5 and 6 h, and then transferred into clear water for 95 days until the generation of offspring larvae at 25 dph. Growth, antioxidant capacity and stress response in offspring larvae were examined. Exposure to Zn for 0.5 h or Cd for 0.5 h and 6 h promoted growth performance and reduced total antioxidant capacity (TAC) and activities of superoxide dismutase (SOD) and catalase (CAT). Malondialdehyde (MDA) and cortisol levels declined in larvae following Zn exposure for 0.5 h, whereas Cd exposure increased MDA content and did not affect cortisol levels. These physiological changes could be partially explained by transcription of genes in the hormone/insulin-like growth factor-I (GH/IGF) axis, NF-E2-related factor 2 (Nrf2) signaling, and hypothalamus-pituitary-interrenal (HPI) axis. For example, Zn exposure for 0.5 h up-regulated genes encoding growth hormone (gh) and insulin-like growth factor binding protein (igfbp1) and down-regulated mRNA levels of nrf2, Kelch-like-ECH-associated protein 1 gene (keap1a), keap1b, sod1, mineralocorticoid receptor (mr), corticotropin-releasing hormone receptor (crhr1), corticotropin-releasing hormone binding protein (crhbp), cytochrome P450 (cyp11a1, cyp17a1) and hydroxysteroid dehydrogenase (hsd3b1). Cd exposure for 0.5 and 6 h up-regulated growth hormone release hormone (ghrh) and igfbp1, down-regulated nrf2 and keap1a, and did not affect mRNA levels of HPI axis genes. Taken together, this study demonstrated that short-term metal exposure during larvae phase had positive and negative effects on offspring even after a long recovery.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Zinco/toxicidade , Cádmio/toxicidade , Oryzias/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Hormônio Liberador da Corticotropina , Hidrocortisona , Poluentes Químicos da Água/toxicidade , Hormônio do Crescimento/genética , RNA Mensageiro
4.
Fish Physiol Biochem ; 48(3): 571-583, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35389126

RESUMO

In this study, the transcriptional regulation of PI3KC3 by three transcription factors (PPARγ, PPARα, and STAT3) and the potential role of PI3KC3 in mediating lipid accumulation were determined in yellow catfish Pelteobagrus fulvidraco. The 5'-deletion assay, overexpression assay, site-mutation assay, and electrophoretic mobility shift assay suggested that PPARα, PPARγ, and STAT3 negatively regulated the promoter activity of pi3kc3. Moreover, the transcriptional inactivation of pi3kc3 was directly mediated by PPARα and PPARγ under fatty acid (FA) treatment. Using primary hepatocytes from yellow catfish, FA incubation significantly increased triacylglyceride (TG) content, non-esterified fatty acid (NEFA) content, and lipid drops (LDs) content, the mRNA level of pparα, pparγ, stat3, and dnmt3b, the protein level of PPARα, PPARγ, and STAT3, and the methylation level of pi3kc3, but significantly reduced the mRNA and protein level of PI3KC3. Our findings offer new insights into the mechanisms for transcriptional regulation of PI3KC3 and for PI3KC3-mediated lipid accumulation in fish.


Assuntos
Peixes-Gato , Animais , Peixes-Gato/genética , Peixes-Gato/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , PPAR alfa/genética , PPAR gama/genética , RNA Mensageiro/metabolismo
5.
Mol Cell Biochem ; 477(5): 1477-1488, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35166986

RESUMO

Ovarian cancer seriously threatens the health of women. LncRNA CRNDE is known to be upregulated in ovarian cancer. However, the mechanism by which CRNDE regulates the progress of ovarian cancer is largely unknown. MTT assay was applied to measure the cell viability. Colony formation assay was used to measure the cell proliferation. Cell migration was tested by wound healing, and Transwell assay was performed to detect cell invasion. In addition, the expression of miR-423-5p, CRNDE and FSCN1 were detected by RT-qPCR and western blotting, respectively. Meanwhile, dual-luciferase reporter assay and RIP assay were performed to explore the correlation between miR-423-5p and CRNDE (or FSCN1). CRNDE and FSCN1 were upregulated in ovarian cancer cells (SKOV3, CAOV-3, IGROV1, A2780 and C13K), while miR-423-5p was downregulated. Moreover, silencing of FSCN1/CRNDE significantly decreased proliferation, migration and invasion of ovarian cancer cells (SKOV3 and CI3K) via suppressing MMP-2 and MMP-9. In addition, CRNDE could sponge miR-423-5p, and FSCN1 was confirmed to be the direct target of miR-423-5p. Furthermore, CRNDE knockdown-induced inhibition of FSCN1 was notably reversed by miR-423-5p downregulation. Knockdown of CRNDE inhibited cell proliferation, migration and invasion of ovarian cancer via miR-423-5p/FSCN1 axis. Thus, CRNDE may serve a new target for ovarian cancer.


Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Carcinoma Epitelial do Ovário/genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neoplasias Ovarianas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
6.
Fish Physiol Biochem ; 47(5): 1383-1393, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34282499

RESUMO

In the present study, two new SLC34 family members, named slc34a1b and slc34a2a, were isolated and characterized from grass carp Ctenopharyngodon idella. Topology, tissue distribution, and transcriptional response to phosphorus (Pi) and pH were compared among three members of SLC34 family (slc34a1b, slc34a2a, and slc34a2b) in grass carp. The length of validated cDNAs of grass carp slc34a1b and slc34a2a was 1494 bp and 1902 bp, and these two cDNAs encoded 497 and 633 amino acid residues, respectively. The domain analysis showed that three SLC34 members of grass carp contain architecture similar to that in mammals. Moreover, the mRNA of three slc34s was widely expressed in nine tissues (heart, brain, intestine, kidney, liver, muscle, gill, spleen, and skin), but at various levels. Our results revealed that 6 mM and 9 mM Pi incubation significantly reduced the mRNA expression of three slc34s in both CIK and L8824 cell lines from grass carp. The expression of slc34a1b was decreased in the CIK cells, but not in the L8824 cells after 3 mM Pi incubation. In CIK cells, 3 mM Pi incubation downregulated the expression of slc34a1b and slc34a2a, but not slc34a2b. In addition, the expression of three slc34s was significantly reduced at acidic pH in the CIK cells. Taken together, we characterized three SLC34 family members, revealed their specific distribution among different tissues, and elucidated their transcriptional responses to Pi and pH in two cell lines from grass carp. Our findings provide an insight into the physiological function of three SLC34s in fish.


Assuntos
Carpas , Doenças dos Peixes , Animais , Carpas/genética , Carpas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Concentração de Íons de Hidrogênio , RNA Mensageiro , Distribuição Tecidual
7.
Int J Mol Sci ; 22(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375507

RESUMO

The present study was performed to clone and characterize the structures and functions of steroidogenic factor 1 (sf-1) and 17α-hydroxylase/lyase (cyp17α) promoters in yellow catfish Pelteobagrus fulvidraco, a widely distributed freshwater teleost. We successfully obtained 1981 and 2034 bp sequences of sf-1 and cyp17α promoters, and predicted the putative binding sites of several transcription factors, such as Peroxisome proliferator-activated receptor alpha (PPARα), Peroxisome proliferator-activated receptor gamma (PPARγ) and Signal transducer and activator of transcription 3 (STAT3), on sf-1 and cyp17α promoter regions, respectively. Overexpression of PPARγ significantly increased the activities of sf-1 and cyp17α promoters, but overexpression of PPARα significantly decreased the promoter activities of sf-1 and cyp17α. Overexpression of STAT3 reduced the activity of the sf-1 promoter but increased the activity of the cyp17α promoter. The analysis of site-mutation and electrophoretic mobility shift assay suggested that the sf-1 promoter possessed the STAT3 binding site, but did not the PPARα or PPARγ binding sites. In contrast, only the PPARγ site, not PPARα or STAT3 sites, was functional with the cyp17α promoter. Leptin significantly increased sf-1 promoter activity, but the mutation of STAT3 and PPARγ sites decreased leptin-induced activation of sf-1 promoter. Our findings offered the novel insights into the transcriptional regulation of sf-1 and cyp17α and suggested leptin regulated sf-1 promoter activity through STAT3 site in yellow catfish.


Assuntos
Peixes-Gato/genética , Regulação da Expressão Gênica/genética , Regiões Promotoras Genéticas , Esteroide 17-alfa-Hidroxilase/genética , Fator Esteroidogênico 1/genética , Animais , Sítios de Ligação , Peixes-Gato/metabolismo , Clonagem Molecular , Genes Reporter , Células HEK293 , Humanos , Leptina/metabolismo , Luciferases/metabolismo , Mutação , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Ligação Proteica , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Esteroide 17-alfa-Hidroxilase/metabolismo , Fator Esteroidogênico 1/metabolismo , Regulação para Cima
8.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153158

RESUMO

It is important to explore the regulatory mechanism of phosphorus homeostasis in fish, which help avoid the risk of P toxicity and prevent P pollution in aquatic environment. The present study obtained the full-length cDNA sequences and the promoters of three SLC20 members (slc20a1a, slc20a1b and slc20a2) from grass carp Ctenopharyngodon idella, and explored their responses to inorganic phosphorus (Pi). Grass carp SLC20s proteins possessed conservative domains and amino acid sites relevant with phosphorus transport. The mRNAs of three slc20s appeared in the nine tissues, but their expression levels were tissue-dependent. The binding sites of three transcription factors (SREBP1, NRF2 and VDR) were predicted on the slc20s promoters. The mutation and EMSA analysis indicated that: (1) SREBP1 binding site (-783/-771 bp) negatively but VDR (-260/-253 bp) binding site positively regulated the activities of slc20a1a promoter; (2) SREBP1 (-1187/-1178 bp), NRF2 (-572/-561 bp) and VDR(615/-609 bp) binding sites positively regulated the activities of slc20a1b promoter; (3) SREBP1 (-987/-977 bp), NRF2 (-1469/-1459 bp) and VDR (-1124/-1117 bp) binding sites positively regulated the activities of the slc20a2 promoter. Moreover, Pi incubation significantly reduced the activities of three slc20s promoters, and Pi-induced transcriptional inactivation of slc20s promoters abolished after the mutation of the VDR element but not SREBP1 and NRF2 elements. Pi incubation down-regulated the mRNA levels of three slc20s. For the first time, our study elucidated the transcriptional regulatory mechanisms of SLC20s and their responses to Pi, which offered new insights into the Pi homeostatic regulation and provided the basis for reducing phosphorus discharge into the waters.


Assuntos
Carpas/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Animais , Carpas/metabolismo , Clonagem Molecular , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/genética , Redes e Vias Metabólicas/genética , Fósforo/metabolismo , Fósforo/farmacologia , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Elementos de Resposta/genética , Análise de Sequência de DNA , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
9.
Ecotoxicol Environ Saf ; 205: 111089, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810645

RESUMO

Early molecular events after the exposure of heavy metals, such as aberrant DNA methylation, suggest that DNA methylation was important in regulating physiological processes for animals and accordingly could be used as environmental biomarkers. In the present study, we found that copper (Cu) exposure increased lipid content and induced the DNA hypermethylation at the whole genome level. Especially, Cu induced hypermethylation of glucose-regulated protein 78 (grp78) and peroxisome proliferator-activated receptor gamma coactivator-1α (pgc1α). CCAAT/enhancer binding protein α (C/EBPα) could bind to the methylated sequence of grp78, whereas C/EBPß could not bind to the methylated sequence of grp78. These synergistically influenced grp78 expression and increased lipogenesis. In contrast, DNA methylation of PGC1α blocked the specific protein 1 (SP1) binding and interfered mitochondrial function. Moreover, Cu increased reactive oxygen species (ROS) production, activated endoplasmic reticulum (ER) stress and damaged mitochondrial function, and accordingly increased lipid deposition. Notably, we found a new toxicological mechanism for Cu-induced lipid deposition at DNA methylation level. The measurement of DNA methylation facilitated the use of these epigenetic biomarkers for the evaluation of environmental risk.


Assuntos
Carpas/fisiologia , Cobre/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Carpas/metabolismo , Cobre/metabolismo , Estresse do Retículo Endoplasmático , Glucose/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Lipídeos , Metilação , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ativação Transcricional , Regulação para Cima
10.
Genes (Basel) ; 11(8)2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751150

RESUMO

Excessive fat deposition in the hepatocytes, associated with excess dietary fat intake, was related to the occurrence of fatty livers in fish. miR-101b plays the important roles in controlling lipid metabolism, but the underlying mechanism at the post-transcriptional level remains unclear. The purpose of this study is to explore the roles and mechanism of miR-101b-mediating lipid deposition and metabolism in yellow catfish Pelteobagrus fulvidraco. We found that miR-101b directly targeted fatty acid translocase (cd36), caspase9 (casp9) and autophagy-related gene 4A (atg4a). Furthermore, using palmitic acid (PA) or oleic acid (OA) to incubate the primary hepatocytes of yellow catfish, we demonstrated that miR-101b inversely regulated cd36, casp9, and atg4a expression at the transcriptional level; the inhibition of miR-101b aggravated fatty acids (FAs, PA or OA)-induced lipid accumulation, indicating that miR-101b mediated FAs-induced variations of lipid metabolism in yellow catfish. Taken together, our study gave novel insight into the regulatory mechanism of lipid deposition and metabolism and might provide potential targets for the prevention and treatment of fatty livers in fish.


Assuntos
Peixes-Gato/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Peixes/metabolismo , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , Animais , Autofagia , Peixes-Gato/genética , Proteínas de Peixes/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Int J Mol Sci ; 21(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120818

RESUMO

The present study was conducted to explore the mechanism of nano-Zn absorption and its influence on lipid metabolism in the intestine of yellow catfish Pelteobagrus fulvidraco. Compared to ZnSO4, dietary nano-Zn addition increased the triglyceride (TG) content, enzymatic activities of malic enzyme (ME) and fatty acid synthase (FAS), and up-regulated mRNA levels of 6pgd, fas, acca, dgat1, pparγ, and fatp4. Using primary intestinal epithelial cells of yellow catfish, compared to the ZnSO4 group, nano-Zn incubation increased the contents of TG and free fatty acids (FFA), the activities of glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6GPD), ME, and FAS, up-regulated mRNA levels of lipogenic genes (6pgd, g6pd, fas, dgat1, and pparγ), genes of lipid transport (fatp4 and ifabp), and Zn transport genes (znt5, znt7, mt, and mtf1), and increased the protein expression of fatty acid transport protein 4 (FATP4) and peroxisome proliferator activated receptor gamma (PPARγ). Further studies found that nano-Zn absorption was via the clathrin-dependent endocytic mechanism. PPARγ mediated the nano-Zn-induced increase in TG, and nano-Zn increased Zn accumulation and induced TG accumulation by activating the PPARγ pathway and up-regulating lipogenesis.


Assuntos
Peixes-Gato/metabolismo , Mucosa Intestinal/metabolismo , Lipogênese/efeitos dos fármacos , Nanopartículas Metálicas/química , PPAR gama/metabolismo , Triglicerídeos/metabolismo , Zinco/metabolismo , Animais , Peixes-Gato/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Clorpromazina/farmacologia , Dieta , Endocitose/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Mucosa Intestinal/enzimologia , Lipogênese/genética , Malato Desidrogenase/metabolismo , PPAR gama/genética
13.
Chemosphere ; 215: 370-379, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30336314

RESUMO

The present study was performed to explore the underlying molecular mechanism of Cu-induced disorder of lipid metabolism in fish. To this end, adult zebrafish were exposed to three waterborne Cu concentrations (0 (control), 8 and 16 µg Cu/L, respectively) for 60 days. Hepatic Cu content and hepatosomatic index increased after waterborne Cu exposure. H&E and oil red O stainings showed extensive steatosis in the liver of Cu-exposed fish. Cu exposure up-regulated lipogenic enzymes activities of ME, ICDH, 6PGD, G6PD and FAS, but down-regulated CPTI activities. Transcriptomic analysis indicated that lipid metabolism related pathways were significantly enriched in both low-dose and high-dose Cu exposure group. Genes involved in lipogenic process from fatty acid biosynthesis, fatty acid elongation, fatty acid desaturation to glycerolipid biosynthesis were up-regulated by Cu. To elucidate the mechanism, LXRα inhibitor SR9243 and SREBP1 inhibitor fatostatin were used to verify the role of LXRα and SREBP1 in Cu-induced disorder of lipid metabolism. Both SR9243 and fatostatin significantly attenuated the Cu-induced increase of TG accumulation of hepatocytes. Meanwhile, SR9243 significantly attenuated the Cu-induced up-regulation of expression of lipogenic genes (acaca, fas, icdh, dgat1, moat2 and moat3), and fatostatin significantly attenuated the up-regulation of expression of acaca, fas, g6pd, dgat1 and moat2. Enzymes analysis showed both SR9243 and fatostatin blocked the Cu-induced increase of lipogenic enzymes activities. Taken together, our findings highlight the importance of LXRα and SREBP1 in Cu-induced hepatic lipid deposition, which proposed a novel mechanism for elucidating metal element exposure inducing the disorder of lipid metabolism in aquatic vertebrates.


Assuntos
Cobre/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Receptores X do Fígado/metabolismo , Fígado/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Hepatócitos/metabolismo , Lipídeos , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo
14.
Aquat Toxicol ; 203: 69-79, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30096479

RESUMO

The present study was conducted to explore the underlying mechanism of unfolded protein response (UPR) mediating the Cu-induced changes of hepatic lipogenic metabolism in a low vertebrate, freshwater teleost yellow catfish Pelteobagrus fulvidraco. To this end, three experiments were conducted. In Exp. 1, we cloned the regions of grp78, perk, ire-1α and atf-6α promoters, and found that multiple cAMP-response element binding protein (CREB) binding sites were identified in their promoter regions. Furthermore, these CREB binding sites played crucial role in transcriptional regulation of UPR. In Exp. 2, the involvement of perk, ire-1α and atf-6α in Cu-induced changes of hepatic lipid metabolism was confirmed by specific miRNA. In Exp. 3, the regulatory mechanism of CREB underlying UPR mediating Cu-induced hepatic lipogenic metabolism were investigated. Cu induced UPR via the activation of CREB binding sites in the promoter regions of grp78, perk, ire-1α and atf-6α. In addition, the inhibition of CREB markedly attenuated the Cu-induced up-regulation of hepatic lipogenic metabolism in hepatocytes. This conclusion was further supported by the results from the trial of CREB over-expression. Taken together, the present study indicated that CREB was essential for UPR mediating Cu-induced lipogenic metabolism, supporting a mechanistic link among CREB, UPR and Cu-induced changes of lipid metabolism.


Assuntos
Peixes-Gato/metabolismo , Cobre/toxicidade , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Resposta a Proteínas não Dobradas , Animais , Sequência de Bases , Sítios de Ligação , Peixes-Gato/genética , Clonagem Molecular , Chaperona BiP do Retículo Endoplasmático , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Regiões Promotoras Genéticas , Ligação Proteica , Análise de Sequência de DNA , Deleção de Sequência , Transcrição Gênica/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
15.
Genes (Basel) ; 9(7)2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970803

RESUMO

We characterized the promoters of target genes of the signal transducer and activator of transcription 3, STAT3 (carnitine palmitoyltransferase I, CPT Iα1b, acetyl-CoA carboxylase alpha, ACCα; fatty acid synthase, FAS; and peroxisome proliferator-activated receptor gamma, PPARγ) in a teleost Pelteobagrus fulvidraco. Binding sites of STAT3 were predicted on these promoters, indicating that STAT3 probably mediated their transcriptional activities. Leptin had no effect on the activity of ACCα and PPARγ promoters, but increased CPT Iα1b promoter activity and decreased FAS promoter activity. The −979/−997 STAT3 binding site of CPT Iα1b and the −794/−812 STAT3 binding site of FAS were functional binding loci responsible for leptin-induced transcriptional activation. The study provided direct evidence that STAT3 regulated the expression of CPT Iα1b and FAS at the transcription level, and determined the STAT3 response element on promoters of CPT Iα1b and FAS under leptin signal.

16.
Biomed Environ Sci ; 31(2): 159-162, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29606196

RESUMO

Chronic heart failure (CHF), a clinical syndrome resulting from the consequences of various cardiovascular diseases (CVDs), is increasingly becoming a global cause of morbidity and mortality. We had earlier demonstrated that a 4-day forest bathing trip can provide an adjunctive therapeutic influence on patients with CHF. To further investigate the duration of the impact and the optimal frequency of forest bathing trips in patients with CHF, we recruited those subjects who had experienced the first forest bathing trip again after 4 weeks and randomly categorized them into two groups, namely, the urban control group (city) and the forest bathing group (forest). After a second 4-day forest bathing trip, we observed a steady decline in the brain natriuretic peptide levels, a biomarker of heart failure, and an attenuated inflammatory response as well as oxidative stress. Thus, this exploratory study demonstrated the additive benefits of twice forest bathing trips in elderly patients with CHF, which could further pave the way for analyzing the effects of such interventions in CVDs.


Assuntos
Terapias Complementares/métodos , Florestas , Insuficiência Cardíaca/terapia , Estresse Oxidativo , Recreação , Idoso , Doença Crônica , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/tratamento farmacológico , Testes de Função Cardíaca , Humanos , Interleucina-6/sangue , Peptídeo Natriurético Encefálico/sangue , Resultado do Tratamento , Fator de Necrose Tumoral alfa/sangue
17.
Aquat Toxicol ; 199: 12-20, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29604498

RESUMO

The present study was performed to determine the effect of waterborne CdCl2 exposure influencing lipid deposition and metabolism, oxidative stress and mitochondrial dysfunction, and explore the underlying molecular mechanism of cadmium (Cd)-induced disorder of hepatic lipid metabolism in fish. To this end, adult zebrafish were exposed to three waterborne CdCl2 concentrations (0(control), 5 and 25 µg Cd/l, respectively) for 30 days. Lipid accumulation, the activities of enzymes related to lipid metabolism and oxidative stress, as well as the expression level of genes involved in lipid metabolism and mitophagy were determined in the liver of zebrafish. Waterborne CdCl2 exposure increased hepatic triglyceride (TG) and Cd accumulation, the activities of fatty acid synthase (FAS), 6-phosphogluconate dehydrogenase (6PGD), glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME), and the mRNA level of fatty acid synthase (fas), acetyl-CoA carboxylase alpha (acaca), glucose 6-phosphate dehydrogenase (g6pd) and malic enzyme (me), but reduced the mRNA level of carnitine palmitoyl transferase 1 (cpt1), hormone-sensitive lipase alpha (hsla), and adipose triacylglyceride lipase (atgl). The activities of superoxide dismutase (SOD), glutathoinine peroxidase (GPx) and cytochrome c oxidase (COX) and the ATP level were significantly reduced after CdCl2 exposure. CdCl2 exposure significantly increased the mRNA level of genes (microtubule-associated protein light chain 3 alpha (lc3a), PTEN-induced putative kinase 1 (pink1), NIP3-like protein X (nix) and PARKIN (parkin)) related to mitophagy. To elucidate the mechanism, reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) and the mitochondrial permeability transition (MPT) inhibitor cyclosporine A (CsA) were used to verify the role of ROS and mitochondrial dysfunction in Cd-induced disorder of lipid metabolism. NAC pretreatment reversed the Cd-induced up-regulation of TG accumulation and activities of lipogenic enzymes, and the Cd-induced down-regulation of mRNA levels of lipolytic genes. Meanwhile, NAC pretreatment also blocked the mitochondrial membrane potential (MMP) collapse and decreased the ATP level, suggesting that ROS played a crucial role in regulating the Cd-induced mitochondrial dysfunction. Taken together, our findings, for the first time, highlight the importance of the oxidative stress and mitochondrial dysfunction in Cd-induced disorder of hepatic lipid metabolism, which proposed a novel mechanism for elucidating metal element exposure inducing the disorder of lipid metabolism in vertebrates.


Assuntos
Cloreto de Cádmio/toxicidade , Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Acetilcisteína/química , Acetilcisteína/farmacologia , Animais , Cloreto de Cádmio/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Triglicerídeos/metabolismo , Regulação para Cima/efeitos dos fármacos , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
Int J Mol Sci ; 19(1)2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29337882

RESUMO

In the present study, the length of 360, 1848 and 367 bp sequences of promoters from three subtypes of PI3K family (PI3KCa, PI3KC2b and PI3KC3) of yellow catfish Pelteobagrus fulvidraco were cloned and characterized. Bioinformatics analysis revealed that PI3KCa, PI3KC2b and PI3KC3 had different structures in their core promoter regions. The promoter regions of PI3KCa and PI3KC2b had CpG islands but no CAAT and TATA box. In contrast, the promoter of PI3KC3 had the canonical TATA and CAAT box but no CpG island. The binding sites of several transcription factors, such as HNF1, STAT and NF-κB, were predicted on PI3KCa promoter. The binding sites of transcription factors, such as FOXO1, PPAR-RXR, STAT, IK1, HNF6 and HNF3, were predicted on PI3KC2b promoter and the binding sites of FOXO1 and STAT transcription factors were predicted on PI3KC3 promoter. Deletion analysis indicated that these transcriptional factors were the potential regulators to mediate the activities of their promoters. Subsequent mutation analysis and electrophoretic mobility-shift assay (EMSA) demonstrated that HNF1 and IK1 directly bound with PI3KCa and PI3KC2b promoters and negatively regulated the activities of PI3KCa and PI3KC2b promoters, respectively. Conversely, FOXO1 directly bound with the PI3KC2b and PI3KC3 promoters and positively regulated their promoter activities. In addition, AS1842856 (AS, a potential FOXO1 inhibitor) incubation significantly reduced the relative luciferase activities of several plasmids of PI3KC2b and PI3KC3 but did not significantly influence the relative luciferase activities of the PI3KCa plasmids. Moreover, by using primary hepatocytes from yellow catfish, AS incubation significantly down-regulated the mRNA levels of PI3KCa, PI3KC2b and PI3KC3 and reduced triacylglyceride (TG) accumulation and insulin-induced TG accumulation, as well as the activities and the mRNA levels of several genes involved in lipid metabolism. Thus, the present study offers new insights into the mechanisms for transcriptional regulation of PI3Ks and for PI3Ks-mediated regulation of lipid metabolism by insulin in fish.


Assuntos
Peixes-Gato/genética , Regulação da Expressão Gênica , Insulina/metabolismo , Metabolismo dos Lipídeos/genética , Família Multigênica , Fosfatidilinositol 3-Quinases/genética , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Sítios de Ligação/genética , Clonagem Molecular , Ilhas de CpG/genética , Luciferases/metabolismo , Mutagênese Sítio-Dirigida , Plasmídeos/metabolismo , Ligação Proteica , RNA Antissenso/metabolismo , Análise de Sequência de DNA , Deleção de Sequência , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo
19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-712922

RESUMO

[Objective]To evaluate the effects of dexmedetomidine intratracheal instillation on quality of emergence from general anesthesia in patients undergoing gynecologic laparoscopic operation. [Methods]Ninety patients of ASA I orⅡ,aged 18~64 years old,weighed 40~80 kg,scheduled for elective gynecological 1aparoscopic surgery under general anes-thesia,expected surgery time 1-2 h,requiring endotracheal extubation after surgery,were randomly divided into 3 group (n=30 each):control group(group C),exmedetomidine administered intratracheally group(group D1)and dexmedetomi-dine administered intravenously group(group D2).At the beginning of operation,2 μg/kg of dexmedetomidine were infused intratracheal through the drug injection hole of disposable enhanced Ⅲendotracheal tube in group D1 and 0.5 μg/kg of dex-medetomidine were intravenous pumped in 10 minutes in group D2,while saline was used in group C.The patients were sent to postanesthesia care unit after extubaion. MAP and HR were recorded at the time of dexmedetomidine or saline infused (T0),and 5,10,15,30 min(T2-T4)after dexmedetomidine or saline infused,immediately after extubation(T5),and 5,10,15,30 min(T6-T9)after extubation.The time of the patients to recover spontaneous breath,eye opening,extubation and direc-tional power were recorded.The cough reflex scores and sedation-agitation scale during extubation,the visual analogue scale and Ramsay sedation scale at 30 minutes after extubation were also recorded.[Results]①Compared with T0,MAP and HR increased statistically at T5~T7in group C,MAP increased statistically at T5~T6and HR increased statistically at T5~T7in group D1 and D2(P<0.05).Compared with group C,MAP and HR at T5~T7decreased statistically in group D1 and D2(P<0.05).②The scores of cough reflex,sedation-agitation scale and visual analogue scale were significantly lower in group Dl and D2 than in group C(P<0.5).③The incidence of agitation,high blood pressure and tachycardia were significantly lower in group D1 and D2 than in group C(P<0.05).[Conclusions]Either intravenous pumping or intratracheal instillation of dex-medetomidine for patients undergoing gynecological laparoscopic surgery can effectively keep stable perioperative hemody-namics,relieve cough reflex,agitation incidence and enhance the quality of emergence from general anesthesia recovery.

20.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-772248

RESUMO

Chronic heart failure (CHF), a clinical syndrome resulting from the consequences of various cardiovascular diseases (CVDs), is increasingly becoming a global cause of morbidity and mortality. We had earlier demonstrated that a 4-day forest bathing trip can provide an adjunctive therapeutic influence on patients with CHF. To further investigate the duration of the impact and the optimal frequency of forest bathing trips in patients with CHF, we recruited those subjects who had experienced the first forest bathing trip again after 4 weeks and randomly categorized them into two groups, namely, the urban control group (city) and the forest bathing group (forest). After a second 4-day forest bathing trip, we observed a steady decline in the brain natriuretic peptide levels, a biomarker of heart failure, and an attenuated inflammatory response as well as oxidative stress. Thus, this exploratory study demonstrated the additive benefits of twice forest bathing trips in elderly patients with CHF, which could further pave the way for analyzing the effects of such interventions in CVDs.


Assuntos
Idoso , Humanos , Doença Crônica , Terapias Complementares , Métodos , Florestas , Insuficiência Cardíaca , Sangue , Tratamento Farmacológico , Terapêutica , Testes de Função Cardíaca , Interleucina-6 , Sangue , Peptídeo Natriurético Encefálico , Sangue , Estresse Oxidativo , Recreação , Resultado do Tratamento , Fator de Necrose Tumoral alfa , Sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...