Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comp Biochem Physiol C Toxicol Pharmacol ; 283: 109954, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838796

RESUMO

Organophosphorus pesticides (OPs), such as chlorpyrifos (CPF), are the most commonly used pesticides worldwide. Considering that OPs will eventually enter aquatic ecosystems due to runoff from agricultural lands, accidental leakage, and other unforeseen emergencies, monitoring water pollution of those substances is crucial for environmental protection and public health. In this study, Japanese medaka (Oryzias latipes) were exposed to CPF (0.03, 0.06, and 0.12 mg/L) for 6 h, and the time-series variations in their locomotor behavior and vocal traits were investigated. Compared with that measured before exposure, significantly changed locomotor behavior and vocal traits in Japanese medaka exposed to CPF could be observed at 4 h after exposure and thereafter, and the pattern of behavioral changes depends on the CPF concentrations. Exposure to CPF also changed the frequency-sound pressure level curve of Japanese medaka at 6 h after exposure, especially at 0.12 mg/L. Moreover, CPF exposure could significantly inhibit the acetylcholinesterase (AChE) activity in the brains and eyes of medaka, which exhibited significant correlations with the variation of locomotor behavioral and vocal traits. Considering that inhibiting the AChE activity is the primary mechanism underlying the neurobehavioral toxicity of all OPs, our finding suggested that simultaneously monitoring changes in the locomotor behavioral and vocal traits has a high potential to reflect the pollution of organophosphorus substances.

2.
Aquat Toxicol ; 265: 106773, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000133

RESUMO

Pollution by diazepam (DZP) is increasingly recognized as a major threat to aquatic organisms, but knowledge about its potential risk to fish is still limited. In this study, we exposed female and male Japanese medaka (Oryzias latipes) to environmentally relevant DZP (0.8 and 8 µg/L) for 28 days and investigated variation in their behavior (on days 7, 14, and 28) and brain neurotransmitter levels (on day 28). The results showed that DZP could be accumulated in the brain and gonads in Japanese medaka. When two fish of the same sex were placed in an aquarium, DZP exposure exhibited typical sedative effects on females (on day 7) and males (on days 7 and 14). However, these sedative effects on both sexes were no longer present after 28 days of exposure. Exposure to DZP induced sex-specific impacts on the social interactions of medaka on days 7, 14, and 28 of exposure in a time-dependent manner. When both sexes were placed into an aquarium in a ratio of 1:1, DZP could significantly alter their locomotor activity and social interaction on days 14 and 28 of the exposure. After 28 days of exposure, DZP significantly altered the levels of several neurotransmitters in the brain of medaka, also in sex-specific manners. The alterations in dopamine and serotonin levels exhibited significant correlations with the increased social interaction between females. At the same time, that of γ-aminobutyric acid significantly correlated to the decreased social interaction between males. Our findings suggest that chronic exposure to DZP, even at environmentally relevant concentrations, can accumulate in the brains and gonads of fish, and alter their behaviors by mediating brain neurotransmitter levels, which may further disturb their reproduction and population dynamics.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Feminino , Masculino , Diazepam/toxicidade , Interação Social , Poluentes Químicos da Água/toxicidade , Reprodução , Encéfalo , Hipnóticos e Sedativos/farmacologia , Neurotransmissores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...