Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(26): eadn4508, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924407

RESUMO

Once considered as a "metabolic waste," lactate is now recognized as a major fuel for tricarboxylic acid (TCA) cycle. Our metabolic flux analysis reveals that skeletal muscle mainly uses lactate to fuel TCA cycle. Lactate is transported through the cell membrane via monocarboxylate transporters (MCTs) in which MCT1 is highly expressed in the muscle. We analyzed how MCT1 affects muscle functions using mice with specific deletion of MCT1 in skeletal muscle. MCT1 deletion enhances running performance, increases oxidative fibers while decreasing glycolytic fibers, and enhances flux of glucose to TCA cycle. MCT1 deficiency increases the expression of mitochondrial proteins, augments cell respiration rate, and elevates mitochondrial activity in the muscle. Mechanistically, the protein level of PGC-1α, a master regulator of mitochondrial biogenesis, is elevated upon loss of MCT1 via increases in cellular NAD+ level and SIRT1 activity. Collectively, these results demonstrate that MCT1-mediated lactate shuttle plays a key role in regulating muscle functions by modulating mitochondrial biogenesis and TCA flux.


Assuntos
Ciclo do Ácido Cítrico , Ácido Láctico , Transportadores de Ácidos Monocarboxílicos , Músculo Esquelético , Biogênese de Organelas , Simportadores , Animais , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Músculo Esquelético/metabolismo , Simportadores/metabolismo , Simportadores/genética , Ácido Láctico/metabolismo , Camundongos , Mitocôndrias/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Knockout , Glicólise
2.
Am J Physiol Endocrinol Metab ; 326(5): E696-E708, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568151

RESUMO

Glycogen is a form of energy storage for glucose in different tissues such as liver and skeletal muscle. It remains incompletely understood how glycogen impacts on adipose tissue functionality. Cold exposure elevated the expression of Gys1 that encodes glycogen synthase 1 in brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT). The in vivo function of Gys1 was analyzed using a mouse model in which Gys1 was deleted specifically in adipose tissues. Under normal chow conditions, Gys1 deletion caused little changes to body weight and glucose metabolism. Deletion of Gys1 abrogated upregulation of UCP1 and other thermogenesis-related genes in iWAT upon prolonged cold exposure or treatment with ß3-adrenergic receptor agonist CL-316,243. Stimulation of UCP1 by CL-316,243 in adipose-derived stromal cells (stromal vascular fractions, SVFs) was also reduced by Gys1 deletion. Both the basal glycogen content and CL-316,243-stimulated glycogen accumulation in adipose tissues were reduced by Gys1 deletion. High-fat diet-induced obesity and insulin resistance were aggravated in Gys1-deleted mice. The loss of body weight upon CL-316,243 treatment was also abrogated by the loss of Gys1. In conclusion, our results underscore the pivotal role of glycogen synthesis in adaptive thermogenesis in beige adipose tissue and its impact on diet-induced obesity in mice.NEW & NOTEWORTHY Glycogen is one of major types of fuel reserve in the body and its classical function is to maintain blood glucose level. This study uncovers that glycogen synthesis is required for beige fat tissue to generate heat upon cold exposure. Such a function of glycogen is linked to development of high-fat diet-induced obesity, thus extending our understanding about the physiological functions of glycogen.


Assuntos
Tecido Adiposo Bege , Dieta Hiperlipídica , Glicogênio , Obesidade , Termogênese , Animais , Termogênese/genética , Termogênese/fisiologia , Camundongos , Obesidade/metabolismo , Obesidade/genética , Tecido Adiposo Bege/metabolismo , Glicogênio/metabolismo , Glicogênio/biossíntese , Masculino , Camundongos Knockout , Camundongos Endogâmicos C57BL , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Glicogênio Sintase/metabolismo , Glicogênio Sintase/genética , Temperatura Baixa , Adaptação Fisiológica , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética
3.
Mol Cell Endocrinol ; 575: 112032, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499998

RESUMO

Progesterone and adipoQ receptor 9 (PAQR9) is an endoplasmic reticulum (ER)-localized membrane protein that is involved in protein quality control of ER by interacting with BAG6. One of the physiological functions of PAQR9 is regulation of fasting-induced ketogenesis and fatty acid oxidation in the liver via modulating protein degradation of PPARα. However, it is currently unknown whether or not PAQR9 impacts glucose homeostasis. We addressed this question using a Paqr9-deleted mouse model in which type 1 diabetes was induced by streptozotocin injection and type 2 diabetes was induced by high-fat diet (HFD) with streptozotocin injection. Paqr9 deletion improved hyperglycemia and glucose tolerance in both of the diabetic mouse models. In the pancreatic islets, Paqr9 deletion reduced apoptosis of ß cells in type 2 diabetic mice. Paqr9 deletion also reduced HFD-induced hepatic steatosis and adiposity of white adipose tissue. In Min6 cells, overexpression of DUF3538 domain of BAG6 to block the interaction of PAQR9 with BAG6 was able to enhance glucose-stimulated insulin secretion upon treatment with inflammatory factors or thapsigargin, an ER stress inducer. Thapsigargin-induced ER stress markers were also reduced by overexpression of DUF3538 domain. Collectively, these results indicate that PAQR9 has a modulatory role in glucose homeostasis, associated with regulation on insulin secretion of ß cells in vitro under stress conditions.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Camundongos , Animais , Secreção de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Estreptozocina , Tapsigargina/metabolismo , Células Secretoras de Insulina/metabolismo , Glucose/metabolismo , Modelos Animais de Doenças , Dieta Hiperlipídica , Homeostase , Estresse do Retículo Endoplasmático
4.
Turk J Gastroenterol ; 32(4): 382-392, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34231485

RESUMO

BACKGROUND: Ulcerative colitis, as a kind of inflammatory bowel disease (IBD) is characterized by abdominal pain. This study aimed to investigate the effect of icariin (ICA) on the intestinal microflora of colitis mice. METHODS: Fifteen female C57BL/6 mice were randomly divided into the Control group, dextran sodium sulfate (DSS)-induced colitis (DSS) group, and ICA treatment (DSS+ICA) group. The severity of inflammation in DSS-induced colitis mice was evaluated using disease activity scoring (considering weight-loss percentage, stool-shape change, and stool-bleeding scoring). Pathological changes of mice intestinal tract were evaluated using hematoxylin-eosin (HE) staining. Serum levels of TNF-α and IL-6 were detected with enzyme-linked immunosorbent assay. Expressions of p65 and p-p65 (p-p65/p65 ratio) were analyzed using Western blot assay. 16S rDNA sequencing was used to analyze the abundance and composition of intestinal microflora. RESULTS: Compared with DSS group, ICA significantly improved disease activity (P < .05) and reduced inflammatory damage of colon tissues (P < .05) in DSS-induced colitis mice. Compared with the DSS group, mice in the ICA group demonstrated significant weight and colon length (P < .05). ICA significantly inhibited expressions of IL-6 and TNF-α compared to the DSS group (P < .05). p-p65/ p65 ratio in the DSS + ICA group was remarkably enhanced compared to the DSS group (P < .05). ICA significantly reduced the proportion and activity of Bacteroides, Helicobacteraceae, Turicibacter, and significantly increased that of beneficial microflora (Lactobacillus, Lachnospiraceae, Akkermansia), so as improved damages of colon tissues. CONCLUSION: ICA can improve intestinal flora abundance and composition of DSS-induced colitis mice, and inhibit tissue damage and inflammatory response through modulating the p-p65/p65 expression.


Assuntos
Colo/efeitos dos fármacos , Sulfato de Dextrana/toxicidade , Flavonoides/farmacologia , Microbioma Gastrointestinal , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Inflamação , Interleucina-6/sangue , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/sangue
5.
Med Sci Monit ; 26: e923104, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32453717

RESUMO

BACKGROUND The metabolic processing of ellagic acid (EA) by cytochrome P450s (CYP450s) expressed in the intestines is unclear. This study aimed to investigate the effects of CYP450s that are highly expressed in HIEC cells on metabolic activity of EA. MATERIAL AND METHODS HIEC cell models expressing 2B6, 2C9, 2D6, and 3A4 were generated by stably transfecting with CYP450 genes using a lentivirus system. PCR and Western blot assay were used to detect expression of CYP450s. Cell Counting Kit-8 (CCK-8) assay was used to examine the cytotoxic effect of EA on CYP450s-expressing HIEC cells. Flow cytometry was employed to evaluate apoptosis of CYP450s-expressing HIEC cells after addition of EA. Metabolic clearance rate of EA in vitro by the constructed HIEC cell models was measured using UPLC-MS method. RESULTS CYP450s expression HIEC cell models, including CYP2B6, CYP2C9, CYP2D6, and CYP3A4, were successfully established. EA treatment at different concentrations (10 µg/mL and 50 µg/mL) remarkably decreased cell viability of HIEC cells expressing CYP2C9 compared to the untreated control (p<0.01), in a concentration-dependent and time-dependent manner. Expression of CYP2C9 significantly increased the apoptosis rate of HIEC cells treated with EA compared to that in HIEC cells without any CYP450s expression (p<0.01). The clearance rate of EA in CYP2B6-expressing (p<0.05) and CYP2C9-expressing (p<0.001) HIEC cell models was remarkably reduced after 120 min. CONCLUSIONS Ellagic acid was effectively activated by CYP2C9 in HIEC cells and caused cytotoxicity and apoptosis of HIEC cells. Therefore, CYP2C9 is main metabolic enzyme of EA when compared to other CYP450 HIEC cell models.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Ácido Elágico/metabolismo , Mucosa Intestinal/metabolismo , Apoptose , Linhagem Celular , Cromatografia Líquida/métodos , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Células Epiteliais/metabolismo , Humanos , Intestinos/fisiologia , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...