Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Onco Targets Ther ; 17: 423-438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827823

RESUMO

Background: Nicotinamide (NAM+) regulates redox and metabolic activities in the mitochondria. The intention of the research was to identify key genes that relate to nicotinamide in hepatocellular carcinoma (HCC). Methods: Relevant clinical information were collected as well as RNA-seq data using the Cancer Genome Atlas (TCGA) database. Differential analysis was used to discover the genes that were differently expressed. On the key genes associated with NAM, functional enrichment analysis was carried out. Next, receiver operating characteristic (ROC) and prognosis Kaplan-Meier (K-M) curve analyses were used to evaluate the importance of important gene expression, respectively. The immune cell signatures were estimated using the CIBERSORT algorithm. Finally, the anticancer impact of NAM on HCC was experimentally confirmed, and important genes NADSYN1 and NT5C were validated at the protein level in clinical specimens. Results: Six prognostic key genes (NAXE, NADSYN1, NT5C, NT5C3A, PNP and NT5E) were identified. There is an association between the level of key gene expression and the clinical prognosis. Four key genes (NAXE, NADSYN1, NT5C and NT5C3A) have statistical significance of survival prognosis. Finally, the expression of NAM-related genes and the inhibitory effect of NAM on HCC were verified by experiments. Conclusion: The study first found some Nicotinamide metabolism-related differentially expressed genes (NMRDEGs) that are related to HCC can contribute to predicting survival and monitoring the treatment.

2.
Int J Oncol ; 64(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38639179

RESUMO

The exosomal pathway is an essential mechanism that regulates the abnormal content of microRNAs (miRNAs) in hepatocellular carcinoma (HCC). The directional transport of miRNAs requires the assistance of RNA­binding proteins (RBPs). The present study found that RBPs participate in the regulation of miRNA content through the exosomal pathway in HCC cells. First, differential protein expression profiles in the serum exosomes of patients with HCC and benign liver disease were detected using mass spectrometry. The results revealed that ribosomal protein L9 (RPL9) was highly expressed in serum exosomes of patients with HCC. In addition, the downregulation of RPL9 markedly suppressed the proliferation, migration and invasion of HCC cells and reduced the biological activity of HCC­derived exosomes. In addition, using miRNA microarrays, the changes in exosomal miRNA profiles in HCC cells caused by RPL9 knockdown were examined. miR­24­3p and miR­185­5p were most differentially expressed, as verified by reverse transcription­quantitative PCR. Additionally, using RNA immunoprecipitation, it was found that RPL9 was directly bound to the two miRNAs and immunofluorescence assays confirmed that RPL9 was able to carry miRNAs into recipient cells via exosomes. Overexpression of miR­24­3p in cells increased the accumulation of miR­24­3p in exosomes and simultaneously upregulated RPL9. Excessive expression of miR­24­3p in exosomes also increased their bioactivity. Exosome­mediated miRNA regulation and transfer require the involvement of RBPs. RPL9 functions as an oncogene, can directly bind to specific miRNAs and can be co­transported to receptor cells through exosomes, thereby exerting its biological functions. These findings provide a novel approach for modulating miRNA profiles in HCC.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , MicroRNAs , Proteínas Ribossômicas , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Oncogenes/genética , Proteínas Ribossômicas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Int J Biol Sci ; 20(5): 1744-1762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481809

RESUMO

Glycolysis exerts a key role in the metabolic reprogramming of cancer. Specific long non-coding RNAs (lncRNAs) have been identified to exhibit oncogenic glycolysis regulation. Nevertheless, the precise mechanisms by which glycolysis-related lncRNAs control hepatocellular carcinoma (HCC) are still unknown. We profiled and analyzed glycolysis-associated lncRNA signatures using HCC specimens from The Cancer Genome Atlas (TCGA) dataset. Considerable upregulation of the glycolysis-related lncRNA SLC2A1-DT was noted in HCC tissues; this upregulation was strongly linked with advanced tumor stage and poor prognosis. Cell culture and animal-related studies indicated that knockdown or overexpression of SLC2A1-DT obviously restrained or promoted glycolysis, propagation, and metastasis in HCC cells. Mechanistically, SLC2A1-DT enhanced the interaction of protein between ß-catenin and YWHAZ, suppressing the binding between ß-catenin and ß-TrCP, an E3 ubiquitin ligase. Thereby, SLC2A1-DT impeded the ß-TrCP-dependent ubiquitination and ß-catenin degradation. The upregulated ß-catenin activated the transcription of c-Myc, which then increased the transcription of glycolytic genes including SLC2A1, LDHA, and HK2. Additionally, we revealed that c-Myc transcriptionally induced the expression of methyltransferase 3 (METTL3), which increased N6-methyladenosine (m6A) modification and stability of SLC2A1-DT in a YTHDF1 dependent manner. Collectively, we show that the lncRNA SLC2A1-DT promotes glycolysis and HCC tumorigenesis by a m6A modification-mediated positive feedback mechanism with glycolytic regulator c-Myc and suggested as an innovative treatment option and indicator for HCC.


Assuntos
Adenina/análogos & derivados , Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Animais , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Retroalimentação , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Glicólise/genética , Regulação Neoplásica da Expressão Gênica/genética , Proliferação de Células/genética
4.
BMC Cancer ; 23(1): 1198, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057830

RESUMO

BACKGROUND: Due to the high drug resistance of hepatocellular carcinoma (HCC), sorafenib has limited efficacy in the treatment of advanced HCC. Cancer-associated fibroblasts (CAFs) play an important regulatory role in the induction of chemoresistance. This study aimed to clarify the mechanism underlying CAF-mediated resistance to sorafenib in HCC. METHODS: Immunohistochemistry and immunofluorescence showed that the activation of CAFs was enhanced in HCC tissues. CAFs and paracancerous normal fibroblasts (NFs) were isolated from the cancer and paracancerous tissues of HCC, respectively. Cell cloning assays, ELISAs, and flow cytometry were used to detect whether CAFs induced sorafenib resistance in HCC cells via CXCL12. Western blotting and qPCR showed that CXCL12 induces sorafenib resistance in HCC cells by upregulating FOLR1. We investigated whether FOLR1 was the target molecule of CAFs regulating sorafenib resistance in HCC cells by querying gene expression data for human HCC specimens from the GEO database. RESULTS: High levels of activated CAFs were present in HCC tissues but not in paracancerous tissues. CAFs decreased the sensitivity of HCC cells to sorafenib. We found that CAFs secrete CXCL12, which upregulates FOLR1 in HCC cells to induce sorafenib resistance. CONCLUSIONS: CAFs induce sorafenib resistance in HCC cells through CXCL12/FOLR1.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Receptor 1 de Folato/metabolismo , Receptor 1 de Folato/uso terapêutico , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo
5.
J Exp Clin Cancer Res ; 42(1): 267, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37840133

RESUMO

BACKGROUND: Long non-coding RNAs (LncRNAs) have been extensively studied to play essential roles in tumor progression. However, more in-depth studies are waiting to be solved on how lncRNAs regulate the progression of hepatocellular carcinoma (HCC). METHODS: Different expression levels of lncRNAs in HCC cells were compared by analysis of Gene Expression Omnibus and The Cancer Genome Atlas databases. The effects of lncRNA FTO Intronic Transcript 1 (FTO-IT1) on HCC cells were assessed by gain- and loss-of-function experiments. Colony formation assay, Edu assay, glucose uptake and lactic acid production assay were performed to evaluate the regulation of proliferation and glycolysis of HCC cells by FTO-IT1. The binding between protein interleukin enhancer binding factor 2/3 (ILF2/ILF3) and FTO-IT1 was determined by RNA pull-down, mass spectroscopy and RNA immunoprecipitation experiments. RNA stability assay, quantitative reverse transcription PCR and Western blot were employed to determine the regulatory mechanisms of FTO-IT1 on fat mass and obesity-associated (FTO). Methylated RNA immunoprecipitation assay was used to assessed the regulation of key enzymes of glycolysis by FTO. The role of FTO-IT1/FTO in vivo was confirmed via xenograft tumor model. RESULTS: LncRNA FTO-IT1, an intronic region transcript of FTO gene, was highly expressed in HCC and associated with poor prognosis of patients with HCC. FTO-IT1 was related to proliferation and glycolysis of HCC cells, and contributed to the malignant progression of HCC by promoting glycolysis. Mechanistically, FTO-IT1 induced stabilization of FTO mRNA by recruiting ILF2/ILF3 protein complex to 3'UTR of FTO mRNA. As a demethylase for N6-methyladenosine (m6A), FTO decreased m6A modification on mRNAs of glycolysis associated genes including GLUT1, PKM2, and c-Myc which alleviated the YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated mRNA degradation. Therefore, the upregulated expression of FTO-IT1 leaded to overexpression of GLUT1, PKM2, and c-Myc by which enhanced glycolysis of HCC. Meanwhile, it was found that c-Myc transcriptional regulated expression of FTO-IT1 by binding to its promoter area under hypo-glucose condition, forming a reciprocal loop between c-Myc and FTO-IT1. CONCLUSIONS: This study identified an important role of the FTO-IT1/FTO axis mediated m6A modification of glycolytic genes contributed to glycolysis and tumorigenesis of HCC, and FTO-IT1 might be served as a new therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Animais , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/genética , Glicólise , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
6.
Gastroenterology ; 165(6): 1488-1504.e20, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37634735

RESUMO

BACKGROUND & AIMS: Studies have demonstrated that activated pancreatic stellate cells (PSCs) play a crucial role in pancreatic fibrogenesis in chronic pancreatitis (CP); however, the precise mechanism for PSCs activation has not been fully elucidated. We analyzed the role of injured pancreatic acinar cells (iPACs) in the activation of PSCs of CP. METHODS: Sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling was evaluated in experimental CP induced by cerulein injection or pancreatic duct ligation, as well as in PACs injured by cholecystokinin. The activation of PSCs and pancreatic fibrosis in CP samples was evaluated by immunohistochemical and immunofluorescence analyses. In vitro coculture assay of iPACs and PSCs was created to evaluate the effect of the SPHK1/S1P pathway and S1P receptor 2 (SIPR2) on autophagy and activation of PSCs. The pathogenesis of CP was assessed in SPHK1-/- mice or PACs-specific SPHK1-knockdown mice with recombinant adeno-associated virus serotypes 9-SPHK1-knockdown, as well as in mice treated with inhibitor of SPHK1 and S1P receptor 2 (S1PR2). RESULTS: SPHK1/S1P was remarkably increased in iPACs and acinar cells in pancreatic tissues of CP mice. Meanwhile, the pathogenesis, fibrosis, and PSCs activation of CP was significantly prevented in SPHK1-/- mice and recombinant adeno-associated virus serotypes 9-SPHK1-knockdown mice. Meanwhile, iPACs obviously activated PSCs, which was prevented by SPHK1 knockdown in iPACs. Moreover, iPACs-derived S1P specifically combined to S1PR2 of PSCs, by which modulated 5' adenosine monophosphate-activated protein kinase/mechanistic target of rapamycin pathway and consequently induced autophagy and activation of PSCs. Furthermore, hypoxia-inducible factor 1-α and -2α promoted SPHK1 transcription of PACs under hypoxia conditions, which is a distinct characteristic of the CP microenvironment. Coincidently, inhibition of SPHK1 and S1PR2 activity with inhibitor PF-543 and JTE-013 obviously impeded pancreatic fibrogenesis of CP mice. CONCLUSIONS: The activated SPHK1/S1P pathway in iPACs induces autophagy and activation of PSCs by regulating the S1PR2/5' adenosine monophosphate-activated protein kinase/mammalian target of rapamycin pathway, which promotes fibrogenesis of CP. The hypoxia microenvironment might contribute to the cross talk between PACs and PSCs in pathogenesis of CP.


Assuntos
Células Acinares , Pancreatite Crônica , Animais , Camundongos , Receptores de Esfingosina-1-Fosfato , Células Estreladas do Pâncreas , Pancreatite Crônica/induzido quimicamente , Autofagia , Proteínas Quinases Ativadas por AMP , Fibrose , Monofosfato de Adenosina , Hipóxia , Mamíferos
7.
J Vis Exp ; (196)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37395582

RESUMO

Laparoscopic anatomic hepatectomy (LAH) has become increasingly prevalent worldwide in recent years. However, LAH remains a challenging procedure due to the anatomical characteristics of the liver, with intraoperative hemorrhage being a primary concern. Intraoperative blood loss is the leading cause of conversion to open surgery; therefore, effective management of bleeding and hemostasis is crucial for a successful LAH. The two-surgeon technique is proposed as an alternative to the traditional single-surgeon approach, with potential benefits in reducing intraoperative bleeding during laparoscopic hepatectomy. However, there remains a lack of evidence to determine which mode of the two-surgeon technique yields superior patient outcomes. Besides, to our knowledge, the LAH technique, which involves the use of a cavitron ultrasonic surgical aspirator (CUSA) by the primary surgeon while an ultrasonic dissector by the second surgeon, has been rarely reported before. Herein, we present a modified, two-surgeon LAH technique, wherein one surgeon employs a CUSA while the other uses an ultrasonic dissector. This technique is combined with a simple extracorporeal Pringle maneuver and low central venous pressure (CVP) approach. In this modified technique, the primary and secondary surgeons utilize a laparoscopic CUSA and an ultrasonic dissectorconcurrently to achieve precise and expeditious hepatectomy. A simple extracorporeal Pringle maneuver, combined with the maintenance of low CVP, is employed to regulate the hepatic inflow and outflow in order to minimize intraoperative bleeding. This approach facilitates the attainment of a dry and clean operative field, which allows for the precise ligation and dissection of blood vessels and bile ducts. The modified LAH procedure is simpler and safer due to its effective control over bleeding as well as the seamless transition between the roles of primary and secondary surgeons. It holds great promise for future clinical applications.


Assuntos
Laparoscopia , Neoplasias Hepáticas , Cirurgiões , Humanos , Hepatectomia/métodos , Perda Sanguínea Cirúrgica/prevenção & controle , Laparoscopia/métodos
8.
Cancer Sci ; 114(9): 3623-3635, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37488751

RESUMO

Pancreatic cancer (PC) development faces significant metabolic stress due to metabolic reprogramming and a distinct hypovascular nature, often leading to glucose and glutamine depletion. However, the adaption mechanisms by which PC adapts to these metabolic challenges have not yet been completely explored. Here, we found that metabolic stress induced by glucose and glutamine deprivation led to an overexpression of ZNFX1 antisense RNA 1 (ZFAS1). This overexpression played a significant role in instigating PC cell epithelial-mesenchymal transition (EMT) and metastasis. Mechanistically, ZFAS1 enhanced the interaction between AMPK, a key kinase, and ZEB1, the primary regulator of EMT. This interaction resulted in the phosphorylation and subsequent stabilization of ZEB1. Interestingly, ZEB1 also reciprocally influenced the transcription of ZFAS1 by binding to its promoter. Furthermore, when ZFAS1 was depleted, the nutrient deprivation-induced EMT of PC cells and lung metastasis in nude mice were significantly inhibited. Our investigations also revealed that ZFAS1-rich exosomes released from cells suffering glucose and glutamine deprivation promoted the EMT and metastasis of recipient PC cells. Corroborating these findings, a correlated upregulation of ZFAS1 and ZEB1 expression was observed in PC tissues and was associated with a poor overall survival rate for patients. Our findings highlight the involvement of a long noncoding RNA-driven metabolic adaptation in promoting EMT and metastasis of PC, suggesting ZFAS1 as a promising novel therapeutic target for PC metabolic treatment.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Transição Epitelial-Mesenquimal/genética , Camundongos Nus , Glutamina/metabolismo , Neoplasias Pancreáticas/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proliferação de Células/genética , Neoplasias Pancreáticas
9.
J Cancer Res Clin Oncol ; 149(13): 11517-11530, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37400571

RESUMO

BACKGROUND: Lactylation has been found to involve in regulating many types of biological process in cancers. However, research on lactylation-related genes in predicting the prognosis of hepatocellular carcinoma (HCC) remains limited. METHODS: The differential expression of lactylation-related genes (EP300 and HDAC1-3) in pan-cancer were examined in public databases. HCC patient tissues were obtained for mRNA expression and lactylation level detection by RT-qPCR and western blotting. Transwell migration assay, CCK-8 assay, EDU staining assay and RNA-seq were performed to verify the potential function and mechanisms in HCC cell lines after lactylation inhibitor apicidin treatment. lmmuCellAI, quantiSeq, xCell, TIMER and CIBERSOR were used to analyze the correlation between transcription levels of lactylation-related genes and immune cell infiltration in HCC. Risk model of lactylation-related genes was constructed by LASSO regression analysis, and prediction effect of the model was evaluated. RESULT: The mRNA levels of lactylation-related genes and lactylation levels were higher in HCC tissues than normal samples. The lactylation levels, cell migration, and proliferation ability of HCC cell lines were suppressed after apicidin treatment. The dysregulation of EP300 and HDAC1-3 was associated with proportion of immune cell infiltration, especially B cell. Upregulation of HDAC1 and HDAC2 was closely associated with poorer prognosis. Finally, a novel risk model, based on HDAC1 and HDAC2, was developed for prognosis prediction in HCC. CONCLUSION: HDAC1 and HDAC2 are expected to become new biomarkers for HCC. Risk scoring model based on HDAC1 and HDAC2 can be used to predict the prognosis of HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Neoplasias Hepáticas/genética , Linfócitos B , Western Blotting
10.
J Vis Exp ; (193)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-37010287

RESUMO

Laparoscopic hepatectomy is an important treatment method for liver cancer. In the past, the resection boundary was usually determined by intraoperative ultrasound, important vascular structures, and surgeon experience. With the development of anatomical hepatectomy, visual surgery technology has gradually been applied to this type of surgery, particularly indocyanine green (ICG)-guided anatomical hepatectomy. As ICG can be specifically ingested by hepatocytes and used for fluorescence tracing, negative staining techniques have been applied according to different tumor positions. Under ICG fluorescent guidance, the surface boundary and deep resection plane can be more accurately displayed during liver resection. Thus, the tumor-bearing liver segment can be anatomically removed, which helps to avoid damage to important vessels and reduce ischemia or congestion of the remaining liver tissue. Finally, the incidence of postoperative biliary fistula and liver dysfunction is reduced; therefore, a better prognosis is obtained after the resection of liver cancer. Centrally located liver cancer is usually defined as a tumor located at segments 4, 5, or 8 that requires resection of the middle section of the liver. These are among the most difficult hepatectomies to perform because of the large surgical wounds and multiple vessel transections. Based on the specific tumor location, we formulated the required resection ranges by designing personalized fluorescent staining strategies. By completing anatomical resection based on the portal territory, this work aims to achieve the best therapeutic effect.


Assuntos
Carcinoma Hepatocelular , Laparoscopia , Neoplasias Hepáticas , Humanos , Verde de Indocianina , Hepatectomia/métodos , Coloração Negativa , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Corantes , Laparoscopia/métodos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia
11.
J Exp Clin Cancer Res ; 41(1): 348, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522730

RESUMO

BACKGROUND: Research has indicated that the emergence of Schwann cells around premalignant lesions of colon cancer might be an early indicator promoting the onset of tumorigenesis. The present study explored the communication between colon cancer cells and Schwann cells. METHODS: Immunofluorescence analyses were conducted to examine the differential distribution of Schwann cells within colon cancer tissues and normal colon tissues. CCK8 assay, colony formation assay, wound healing assay, and transwell assay were performed to investigate the interaction between colon cancer cells and Schwann cells. Exosomes derived from colon cancer cells were isolated to further explore the effect of colon cancer cells on Schwann cells. Gain- and loss-of function experiments, luciferase reporter assays, chromatin immunoprecipitation assays, and immunohistochemistry assays were performed to reveal the cross-talk between colon cancer cells and Schwann cells. Furthermore, colon cancer cells co-cultured with Schwann cells were transplanted into nude mice for evaluating their effect on tumor proliferation and metastasis in vivo. RESULTS: The clinicopathological characteristics indicated that Schwann cells were enriched in colon cancer tissues and were associated with tumor metastasis and poor prognosis. The co-culture of Schwann cells with colon cancer cells promoted the proliferation and migration of colon cancer cells and Schwann cells, which was mediated by nerve growth factor (NGF) secreted from Schwann cells. Exosomal miR-21-5p released by colon cancer cells inhibited VHL expression in Schwann cells, which in turn stabilized the HIF-1α protein and increased the transcription of NGF. Meanwhile, the Schwann cells-derived NGF activated TrkA/ERK/ELK1/ZEB1 signaling pathway in colon cancer cells, which further enhanced the expression of exosomal miR-21-5p. Inhibition of either NGF or miR-21-5p significantly inhibited the proliferation and metastasis of transplanted colon cancer cells in nude mice. Coincidently, miR-21-5p was positively associated with the expression of NGF, p-ERK, p-ELK1, and ZEB1 in human colon cancer tissues. CONCLUSIONS: Our results implicated a reciprocal communication between colon cancer cells and Schwan cells that promoted the proliferation and metastasis of colon cancer, and identified NGF and exosomal miR-21-5p as potential therapeutic targets for the treatment of colon cancer.


Assuntos
Neoplasias do Colo , MicroRNAs , Camundongos , Animais , Humanos , Camundongos Nus , Fator de Crescimento Neural/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Movimento Celular , Retroalimentação , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Células de Schwann/metabolismo
12.
Front Biosci (Landmark Ed) ; 27(3): 89, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35345321

RESUMO

BACKGROUND: p62 is a multi-domain protein and participates in a variety of cellular biological activities. p62 is also related to tumor malignancy. However, the underlying molecular mechanism of p62 regulating the progression of hepatocellular carcinoma (HCC) remains unclear. METHODS: The expression levels of p62 in HCC tissues and adjacent non-tumor tissues were confirmed using the TCGA dataset and immunohistochemistry. Stable p62-overexpressing HepG2 cells and p62-knockdown MHCC97H cells were established with lentiviral vectors. Cell proliferation, migration, and invasion assays were carried out to investigate the role of p62 in HCC cells and HCC-derived exosomes. The relationship between p62 and ß-catenin was investigated by immunofluorescence and co-immunoprecipitation assays. Male nude mice (BALB/c-nu/nu) were used to establish the xenograft tumors. RESULTS: We found that p62 was significantly upregulated in HCC, and a high level of p62 indicated the promotion of malignancy including cell proliferation, migration, and invasion. Exosomes derived from p62-overexpressing HepG2 also demonstrated the ability to promote tumor malignancy. Immunofluorescence and co-immunoprecipitation assays indicated that p62 interacts with ß-catenin and regulates the localization of ß-catenin to affect the intercellular junction. p62 also promotes tumor growth of HCC and down-regulates the expression of ß-catenin in vivo. CONCLUSIONS: The results of this study concluded that p62 promotes the malignancy of HCC by regulating the secretion of exosomes and the localization of ß-catenin. These findings may provide new ideas for the diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , Proteínas de Ligação a RNA , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Exossomos/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Ligação a RNA/genética , beta Catenina/genética , beta Catenina/metabolismo
13.
J Exp Clin Cancer Res ; 41(1): 69, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183226

RESUMO

BACKGROUND: Glycolysis is a pivotal process in metabolic reprogramming of tumorigenesis. Previous research has indicated that lncRNAs might play crucial roles in glycolysis of various tumors. However, the function of lncRNAs in glycolysis of pancreatic cancer has not been fully elucidated. METHODS: Bio-information analyses were applied to reveal the potential glycolysis-associated lncRNA. RT-PCR and fluorescence in situ hybridization (FISH) assays were applied to detect the expression of antisense RNA1 of DICER1 (DICER1-AS1) in pancreatic cancer tissues and cell lines. Gain- and loss-of-function experiments were performed to evaluate the roles of DICER1-AS1 in glycolysis and tumorigenesis of PC. Mechanistic experiments including luciferase reporter assay, RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (ChIP) were employed to uncover the downstream targets and regulatory mechanism of DICER1-AS1 in glycolysis of PC. RESULTS: Bio-information analysis indicated that DICER1-AS1 was downregulated in PC and negatively correlated with glycolytic genes expression. Meanwhile, overexpression of DICER1-AS1 inhibited glycolysis, proliferation, and metastasis of PC cells both in vitro and in vivo. Mechanistically, DICER1-AS1 promoted transcription of its sense gene DICER1 by recruiting transcriptional factor YY1 to the DICER1 promoter. Meanwhile, DICER1 promoted maturation of miR-5586-5p which consequently inhibited glycolytic gene expression including LDHA, HK2, PGK1, and SLC2A1. Notably, enhanced interaction between N6-methyladenosine (m6A) reader YTHDF3 and DICER1-AS1 led to degradation of DICER1-AS1 in response to glucose depletion. Moreover, our data revealed that YTHDF3 was a critical target for miR-5586-5p, by which forming a negative feedback with DICER1-AS1 to regulate glycolysis of PC. CONCLUSION: Our results implicate a negative feedback of m6A reader YTHDF3 and glycolytic lncRNA DICER1-AS1 is involved in glycolysis and tumorigenesis of PC.


Assuntos
Adenosina/análogos & derivados , RNA Helicases DEAD-box/metabolismo , Neoplasias Pancreáticas/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo , Adenosina/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Glicólise , Humanos , Neoplasias Pancreáticas/patologia , Transfecção
14.
Front Surg ; 8: 746618, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901139

RESUMO

Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) can induce rapid hypertrophy of the liver remnant. However, with a background of liver cirrhosis or other chronic liver diseases, patients with a huge hepatocellular carcinoma (HCC) may sometimes face insufficiency of hepatocellular regeneration after associating liver partition and portal vein ligation for staged hepatectomy (ALPPS). Herein, we report a 56-year-old male with a vast HCC (13.3 × 8.5 × 13 cm) whose ratio of the future liver remnant (FLR)/standard liver volume (SLV) was 28.7% when the disease was first diagnosed. Inadequate hypertrophy of FLR was shown in postoperative volumetric assessment a month after stage I ALPPS. After multidisciplinary team discussion (MDT), the patient was decided to follow three courses of hepatic arterial infusion chemotherapy (HAIC) with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4). The last HAIC was performed together with transhepatic arterial embolization (TAE). Finally, ratio of the FLR/SLV increased from 28.7% to 40% during three-month intervals, meeting the requirements of the surgery. Stage II ALPPS, right trisectionectomy, was then successfully performed. There was no recurrence at half years of follow-up. In our case, HAIC seems to be more potent than transcatheter arterial chemoembolization (TACE) in maintaining the hyperplasia of the liver remnant, reducing tumor load, and preventing tumor progression in patients with a large HCC during ALPPS procedure. HAIC, following the first step of ALPPS, a pioneering treatment modality aiming for inadequate hypertrophy of FLR induced by ALPPS, could be an alternative procedure for patients with a vast HCC in clinical practice.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120031, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34119767

RESUMO

A new pH-sensitive fluorescent probe NAP-MDA was designed and synthesized. NAP-MDA consists of 1,8-naphthalimide as fluorophore, morpholine and N,N-dimethylethylenediamine as pH-responsive groups. Due to the photoinduced electron transfer (PET) mechanism, the fluorescence of 1, 8-naphthalimide was thoroughly quenched under alkaline condition (pH > 10.0), however, NAP-MDA displayed increasing fluorescence as the rise of acidity. Notably, NAP-MDA possessed an excellent linear dependence with neutral to alkaline pH (7.2-9.4), with a pKa of 8.38. NAP-MDA had good photostability and reversibility. Meanwhile, the probe was selective to pH without interference from common reactive species, temperature and viscosity. Fluorescent testing strips were fabricated with NAP-MDA and were successfully utilized to visualize the different pH with a handhold UV lamp. Confocal fluorescence imaging in live cells demonstrated that NAP-MDA mainly fluoresced in lysosomes, and could be applied for quantification of the pH within live cells.


Assuntos
Corantes Fluorescentes , Naftalimidas , Fluorescência , Concentração de Íons de Hidrogênio , Lisossomos , Imagem Óptica
16.
Cell Commun Signal ; 18(1): 46, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183816

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is a highly vascularized solid tumor. Angiopoietin-2 (ANGPT2) has been described as an attractive target for antiangiogenic therapy. Exosomes are small extracellular vesicles secreted by most cell types and contribute to cell-to-cell communication by delivering functional cargo to recipient cells. The expression of ANGPT2 in tumor-derived exosomes remains unknown. METHODS: We detected the ANGPT2 expression in HCC-derived exosomes by immunoblotting, enzyme-linked immunosorbent assay and immunogold labeling, then observed exosomal ANGPT2 internalization and recycling by confocal laser scanning microscopy, co-immunoprecipitation and immunoblotting. We used two HCC cell lines (Hep3B and MHCC97H) to overexpress ANGPT2 by lentivirus infection or knockdown ANGPT2 by the CRISPR/Cas system, then isolated exosomes to coculture with human umbilical vein endothelial cells (HUVECs) and observed the angiogenesis by Matrigel microtubule formation assay, transwell migration assay, wound healing assay, cell counting kit-8 assay, immunoblotting and in vivo tumorigenesis assay. RESULTS: We found that HCC-derived exosomes carried ANGPT2 and delivered it into HUVECs by exosome endocytosis, this delivery led to a notable increase in angiogenesis by a Tie2-independent pathway. Concomitantly, we observed that HCC cell-secreted exosomal ANGPT2 was recycled by recipient HUVECs and might be reused. In addition, the CRISPR-Cas systems to knock down ANGPT2 significantly inhibited the angiogenesis induced by HCC cell-secreted exosomal ANGPT2, and obviously suppressed the epithelial-mesenchymal transition activation in HCC. CONCLUSIONS: Taken together, these results reveal a novel pathway of tumor angiogenesis induced by HCC cell-secreted exosomal ANGPT2 that is different from the classic ANGPT2/Tie2 pathway. This way may be a potential therapeutic target for antiangiogenic therapy. Video Abstract.


Assuntos
Angiopoietina-2/fisiologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...