Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Vet Sci ; 141: 4-13, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34634684

RESUMO

African swine fever (ASF) is an acute hemorrhagic disease caused by the infection of domestic swine and wild boar by the African swine fever virus (ASFV), with a mortality rate close to 90-100%. ASFV has been spreading in the world and poses a severe economic threat to the swine industry. There is no high effective vaccine commercially available or drug for this disease. However, attenuated ASFV isolates may infect pigs by chronic infection, and the infected pigs will not be lethal, which may indicate that pigs can produce protective immunity to resistant ASFV. Immunity acquisition and virus clearances are the central pillars to maintain the host normal cell activities and animal survival dependent on virus-host interactions, which has offered insights into the biology of ASFV. This review is organized around general themes including native immunity, endoplasmic reticulum stress, cell apoptosis, ubiquitination, autophagy regarding the intricate relationship between ASFV protein-host. Elucidating the multifunctional role of ASFV proteins in virus-host interactions can provide more new insights on the initial virus sensing, clearance, and cell homeostasis, and contribute to understanding viral pathogenesis and developing novel antiviral therapeutics.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Animais , Homeostase , Interações entre Hospedeiro e Microrganismos , Infecção Persistente/veterinária , Sus scrofa , Suínos
2.
Virol Sin ; 36(2): 176-186, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33141406

RESUMO

African swine fever (ASF) is an infectious transboundary disease of domestic pigs and wild boar and spreading throughout Eurasia. There is no vaccine and treatment available. Complex immune escape strategies of African swine fever virus (ASFV) are crucial factors affecting immune prevention and vaccine development. MGF360 genes have been implicated in the modulation of the IFN-I response. The molecular mechanisms contributing to innate immunity are poorly understood. In this study, we demonstrated that ASFV MGF360-12L (MGF360 families 12L protein) significantly inhibited the mRNA transcription and promoter activity of IFN-ß and NF-κB, accompanied by decreases of IRF3, STING, TBK1, ISG54, ISG56 and AP-1 mRNA transcription. Also, MGF360-12L might suppress the nuclear localization of p50 and p65 mediated by classical nuclear localization signal (NLS). Additionally, MGF360-12L could interact with KPNA2, KPNA3, and KPNA4, which interrupted the interaction between p65 and KPNA2, KPNA3, KPNA4. We further found that MGF360-12L could interfere with the NF-κB nuclear translocation by competitively inhibiting the interaction between NF-κB and nuclear transport proteins. These findings suggested that MGF360-12L could inhibit the IFN-I production by blocking the interaction of importin α and NF-κB signaling pathway, which might reveal a novel strategy for ASFV to escape the host innate immune response.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vírus da Febre Suína Africana/genética , Animais , Interferon beta/metabolismo , NF-kappa B , Transdução de Sinais , Suínos , alfa Carioferinas/genética
3.
Gene ; 763: 145071, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-32827682

RESUMO

The previous study indicated that transport stress resulted in oxidative damage and autophagy/mitophagy elevation, companied by NOX1 over- expression in the jejunal tissues of pigs. However, the transportation-related gene expression profile and NOX1 function in intestine remain to be explicated. In the current study, differentially expressed genes involved in PI3K-Akt and NF-κB pathways, oxidative stress and autophagy process have been identified in pig jejunal tissues after transcriptome analysis following transportation. The physiological functions of NOX1 down-regulation were explored against oxidative damage and excessive autophagy in porcine intestinal epithelial cells (IPEC-1) following NOX1 inhibitor ML171 and H2O2 treatments. NOX1 down-regulation could decrease the content of Malondialdehyde (MDA), Lactic dehydrogenase (LDH) activity and reactive oxygen species (ROS) level, and up-regulate superoxide dismutase (SOD) activity. Furthermore, mitochondrial membrane potential and content were restored, and the expressions of tight junction proteins (Claudin-1 and ZO-1) were also increased. Additionally, NOX1 inhibitior could down-regulate the expression of autophagy-associated proteins (ATG5, LC3, p62), accompanied by activating SIRT1/PGC-1α pathway. NOX1 down-regulation might alleviate oxidative stress-induced mitochondria damage and intestinal mucosal injury via modulating excessive autophagy and SIRT1/PGC-1α signaling pathway. The data will shed light on the molecular mechanism of NOX1 on intestine oxidative damage following pig transportation.


Assuntos
Autofagia , Enterócitos/metabolismo , NADPH Oxidase 1/metabolismo , Estresse Oxidativo , Estresse Psicológico/metabolismo , Transcriptoma , Animais , Linhagem Celular , Feminino , Masculino , Mitocôndrias/metabolismo , NADPH Oxidase 1/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Estresse Psicológico/genética , Suínos
4.
Biochimie ; 170: 10-20, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31830513

RESUMO

Oxidative stress leads to intestinal epithelial cells damage, which induces tight junction injury and systemic endogenous stress syndrome. The evidence suggests that SIRT1/PGC-1α pathway is closely associated with oxidative damage. However, the mechanism in protecting intestinal epithelial cells against oxidative stress dependant on autopahgy/mitophagy remains to be elucidated. In the current study, we investigated the functional role of SIRT1/PGC-1α pathway on regulation of autopahgy/mitophagy and tight junction protein expression underlying the oxidative dysfunction in porcine intestinal epithelial cells (IPEC-1). Results demonstrated that H2O2 exposure caused high accumulation of ROS, with a decrease of mitochondrial membrane potential and an inhibition of the tight junction molecules in IPEC-1 cells. Also, COX IV mRNA expression and SIRT1/PGC-1α pathway were suppressed. Autophagy and PINK1/Parkin dependant-mitophagy were activated following H2O2 treatment. Further research indicated that activation of SIRT1/PGC-1α pathway caused by specific activator SRT 1720 resulted in elevating autophagy/mitophagy related markers and SIRT1 inhibitor EX 527 reversed these effects. Additionally, SIRT1 activation significantly suppressed the ROS generation, leading to increase mitochondrial membrane potential and COX IV expression. Most importantly, the expression of tight junction molecules contributing to maintain intestinal barrier integrity was significantly up-regulated. Collectively, these findings indicated that autophagy/mitophagy elevation caused by SIRT1/PGC-1α pathway activation might be a protective mechanism to increase tight junction integrity against oxidative stress-mediated ROS production in IPEC-1 cells.


Assuntos
Autofagia , Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mitofagia , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Peróxido de Hidrogênio/farmacologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Oxidantes/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Sirtuína 1/genética
5.
J Anim Physiol Anim Nutr (Berl) ; 103(5): 1521-1529, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31328334

RESUMO

Pig transportation is associated with intestinal oxidative stress and results in destruction of intestinal integrity. Autophagy has been contributed to maintain cell homeostasis under stresses. The purpose of this study was to evaluate the effects of transport stress on morphology, intestinal mucosal barrier and autophagy/mitophagy levels in pig jejunum. A total of 16 finishing pigs were randomly divided into two groups. The control group was directly transported to the slaughterhouse and rested for 24 hr. The experimental groups were transported for 5 hr and slaughtered immediately. The results showed that transportation induced obvious stress responses with morphological and histological damage in jejunum accompanying with an elevated level of malondialdehyde (MDA; p < .05), endotoxin (LPS; p < .05), lactic dehydrogenase (LDH; p < .05) and a decreased level of serum superoxide dismutase (SOD; p < .05). Also, hemeoxy genase 1 (HO-1; p < .01) as well as tight junction protein (claudin-1 [p < .001], occludin [p < .05] and zonula occludens 1 [ZO-1; p < 0.05]) levels were attenuated in jejunum tissue, and NADPH oxidase 1 (NOX1; p < .01) mRNA expression was up-regulated. Further research indicated that transport stress could induce autophagy through increasing microtubule-associated protein light chain 3 (LC3; p < .05) and autophagy-related gene 5 (ATG5; p < .01) levels and suppressing p62 expression. Additionally, transport stress increased the protein levels of PTEN-induced putative kinase 1 (PINK1; p < .05) and Parkin (p < .05) which was associated with mitophagy. In conclusions, transport stress could induce the destruction of intestinal integrity and involve in the intestinal mucosal barrier oxidative damage, and also contribute to activation of autophagy/mitophagy.


Assuntos
Jejuno/patologia , Mitofagia/fisiologia , Estresse Oxidativo , Estresse Fisiológico , Suínos/sangue , Meios de Transporte , Animais , Regulação da Expressão Gênica , Mucosa Intestinal , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Junções Íntimas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
J Cell Physiol ; 234(5): 7420-7434, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30362538

RESUMO

Long noncoding RNA urothelial carcinoma associated 1 (UCA1) has been implicated in the growth and metastasis of colorectal cancer (CRC), and autophagy contributes to tumorigenesis and cancer cell survival. However, the regulatory role of UCA1 in CRC cell viability by modulating autophagy remains unclear. In the present study, a significant positive correlation was observed between UCA1 and microtubule-associated protein 1 light chain 3 (LC3) levels, and the elevated UCA1 was negatively correlated with the PKB/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway in 293T cells. Downregulation of UCA1 inhibited autophagy activation and cell proliferation, whereas the apoptosis was increased and the cell cycle was arrested in G2 stage. The next results showed that UCA1 was markedly upregulated in Caco-2 cells. Knockdown of UCA1 significantly decreased the LC3-II and autophagy-related gene 5 (ATG5) protein levels and resulted in an increase in p62 expression. Conversely, the autophagy activator rapamycin (RAPA) reversed the effects. Furthermore, downregulated UCA1 decreased Caco-2 cells population in the G1 phase and increased the cells number in G2 phage. The cell proliferation was inhibited, and apoptosis rate was promoted. More important, RAPA could also abrogate the changes induced by knockdown of UCA1. Collectively, these data demonstrated that downregulated UCA1 induced autophagy inhibition, resulting in suppressing cell proliferation and promoting apoptosis, which suggested that UCA1 might serve as a potential new oncogene to regulate CRC cells viability by modulating autophagy.


Assuntos
Apoptose , Autofagia , Proliferação de Células , Neoplasias Colorretais/metabolismo , RNA Longo não Codificante/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Células CACO-2 , Ciclo Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...