Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 9(7)2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30970932

RESUMO

The implantation of biomedical devices, including collagen-based implants, evokes an inflammatory response. Despite inflammation playing an important role in the early stages of wound healing, excessive and non-resolving inflammation may lead to the poor performance of biomaterial implants in some patients. Therefore, steps should be taken to control the level and duration of an inflammatory response. In this study, oxygen and nitrogen gas plasmas were employed to modify the surface of collagen film, with a view to modifying the surface properties of a substrate in order to induce changes to the inflammatory response, whilst maintaining the mechanical integrity of the underlying collagen film. The effects of cold plasma treatment and resultant changes to surface properties on the non-specific inflammatory response of the immune system was investigated in vitro in direct contact cell culture by the measurement of protein expression and cytokine production after one and four days of human peripheral blood mononuclear cell (PBMC) culture. The results indicated that compared to oxygen plasma, nitrogen plasma treatment produced an anti-inflammatory effect on the collagen film by reducing the initial activation of monocytes and macrophages, which led to a lower production of pro-inflammatory cytokines IL-1ß and TNFα, and higher production of anti-inflammatory cytokine IL-10. This was attributed to the combination of the amino chemical group and the significant reduction in roughness associated with the introduction of the nitrogen plasma treatment, which had an effect on the levels of activation of the adherent cell population.

2.
ACS Nano ; 11(1): 721-729, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28001347

RESUMO

The performance of solar-thermal conversion systems can be improved by incorporation of nanocarbon-stabilized microencapsulated phase change materials (MPCMs). The geometry of MPCMs in the microcapsules plays an important role for improving their heating efficiency and reliability. Yet few efforts have been made to critically examine the formation mechanism of different geometries and their effect on MPCMs-shell interaction. Herein, through changing the cooling rate of original emulsions, we acquire MPCMs within the nanocarbon microcapsules with a hollow structure of MPCMs (h-MPCMs) or solid PCM core particles (s-MPCMs). X-ray photoelectron spectroscopy and atomic force microscopy reveals that the capsule shell of the h-MPCMs is enriched with nanocarbons and has a greater MPCMs-shell interaction compared to s-MPCMs. This results in the h-MPCMs being more stable and having greater heat diffusivity within and above the phase transition range than the s-MPCMs do. The geometry-dependent heating efficiency and system stability may have important and general implications for the fundamental understanding of microencapsulation and wider breadth of heating generating systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...