Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Cancer Res ; 13(6): 3142-3155, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988912

RESUMO

Background and Objective: Long noncoding RNAs (lncRNAs) are involved in a wide variety of physiological and pathological processes in organisms. LncRNAs play a significant role as oncogenic or tumour-suppressing factors in various biological processes associated with malignant tumours and are closely linked to the occurrence and development of malignancies. Lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) is a recently discovered lncRNA. It is upregulated in various malignant tumours and is associated with pathological characteristics such as tumour size, tumour node metastasis (TNM) staging, lymph node metastasis, and tumour prognosis. LOXL1-AS1 exerts its oncogenic role by competitively binding with multiple microRNAs (miRs), thereby regulating the expression of downstream target genes and controlling relevant signalling pathways. This article aims to explore the structure and the function of LOXL1-AS1, and the relationship between LOXL1-AS1 and the occurrence and development of human malignant tumours to provide a reference for further clinical research. Methods: English literature on LOXL1-AS1 in the occurrence and development of various malignant tumours was searched in PubMed. The main search terms were "LOXL1-AS1", "tumour". Key Content and Findings: This article mainly summarizes the biological processes in which LOXL1-AS1 is involved in various human malignant tumours and the ways in which this lncRNA affects malignant biological behaviours such as proliferation, metastasis, invasion, and apoptosis of tumour cells through different molecular regulatory mechanisms. This article also explores the potential clinical significance and application prospects of LOXL1-AS1, aiming to provide a theoretical basis and reference for the clinical diagnosis, treatment, and screening of prognostic markers for malignant tumours. Conclusions: LOXL1-AS1 acts as a competing endogenous RNA (ceRNA), binding to miRs to regulate downstream target genes and exert its oncogenic effects. LOXL1-AS1 may become a novel molecular biomarker for cancer diagnosis and treatment in humans, and it may also serve as an independent prognostic indicator.

2.
Transl Cancer Res ; 13(4): 2026-2042, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38737700

RESUMO

Background and Objective: Lysyl oxidase-like protein 4 (LOXL4) is a secreted copper-dependent amine oxidase involved in the assembly and maintenance of extracellular matrix (ECM), playing a critical role in ECM formation and repair. Tumor-stroma interactions and ECM dysregulation are closely associated with the mechanisms underlying tumor initiation and progression. LOXL4 is the latest identified member of the lysyl oxidase (LOX) protein family. Currently, there is limited and controversial research on the role of LOXL4 in human malignancies. Its specific regulatory pathways, mechanisms, and roles in the occurrence, development, and treatment of malignancies remain incompletely understood. This article aims to illustrate the primary protein structure and the function of LOXL4 protein, and the relationship between LOXL4 protein and the occurrence and development of human malignant tumors to provide a reference for further clinical research. Methods: We searched the English literature on LOXL4 in the occurrence and development of various malignant tumors in PubMed and Web of Science. The search keywords include "cancer" "LOXL4" "malignant tumor" "tumorigenesis and development", etc. Key Content and Findings: LOXL4 is up-regulated in human gastric cancer, breast cancer, ovarian cancer, head and neck squamous cell carcinoma, esophageal carcinoma and colorectal cancer, but down-regulated in human bladder cancer and lung cancer and inhibits tumor growth. There are two conflicting reports of both upregulation and downregulation in hepatocellular carcinoma, suggesting that LOXL4 has a bidirectional effect of promoting or inhibiting cancer in different types of human malignant tumors. We further explore the application prospect of LOXL4 protein in the study of malignant tumors, laying a theoretical foundation for the clinical diagnosis, treatment and screening of prognostic markers of malignant tumors. Conclusions: LOXL4 exerts a bidirectional regulatory role, either inhibiting or promoting tumors depending on the type of cancer. We still need more research to further confirm the molecular mechanism of LOXL4 in cancer progression.

3.
Genet Test Mol Biomarkers ; 28(5): 189-198, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38634609

RESUMO

Background: In Dayao County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, Southwest China, 5% of the surface is scattered with blue asbestos, which has a high incidence of pleural mesothelioma (PMe). Simian virus 40 (SV40) is a small circular double-stranded DNA polyomavirus that can cause malignant transformation of normal cells of various human and animal tissue types and promote tumor growth. In this study, we investigate whether oncogenic SV40 is associated with the occurrence of PMe in the crocidolite-contaminated area of Dayao County, Yunnan Province, Southwest China. Methods: Tumor tissues from 51 patients with PMe (40 of whom had a history of asbestos exposure) and pleural tissues from 12 non-PMe patients (including diseases such as pulmonary maculopathy and pulmonary tuberculosis) were collected. Three pairs of low-contamination risk primers (SVINT, SVfor2, and SVTA1) were used to detect the gene fragment of SV40 large T antigen (T-Ag) by polymerase chain reaction (PCR). The presence of SV40 T-Ag in PMe tumor tissues and PMe cell lines was detected by Western blotting and immunohistochemical staining with SV40-related antibodies (PAb 101 and PAb 416). Results: PCR, Western blotting, and immunohistochemical staining results showed that the Met5A cell line was positive for SV40 and contained the SV40 T-Ag gene and protein. In contrast, the various PMe cell lines NCI-H28, NCI-H2052, and NCI-H2452 were negative for SV40. PCR was negative for all three sets of low-contamination risk primers in 12 non-PMe tissues and 51 PMe tissues. SV40 T-Ag was not detected in 12 non-PMe tissues or 51 PMe tissues by immunohistochemical staining. Conclusion: Our data suggest that the occurrence of PMe in the crocidolite-contaminated area of Yunnan Province may not be related to SV40 infection and that crocidolite exposure may be the main cause of PMe. The Clinical Trial Registration number: 2020-YXLL20.


Assuntos
Asbesto Crocidolita , Neoplasias Pleurais , Vírus 40 dos Símios , Humanos , Vírus 40 dos Símios/genética , China/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Neoplasias Pleurais/epidemiologia , Neoplasias Pleurais/virologia , Neoplasias Pleurais/genética , Mesotelioma/virologia , Mesotelioma/epidemiologia , Mesotelioma/genética , Infecções por Polyomavirus/epidemiologia , Infecções Tumorais por Vírus/epidemiologia , Linhagem Celular Tumoral , Mesotelioma Maligno/genética , Neoplasias Pulmonares/virologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/epidemiologia , Adulto
4.
Transl Cancer Res ; 9(1): 173-186, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35117171

RESUMO

BACKGROUND: Mitochondrial transcription termination factor 3 (MTERF3) is a negative regulator of mitochondrial transcription. It is a modular factor involves in mitochondrial ribosome biogenesis and protein synthesis. However, the association between MTERF3 and breast cancers remains largely unknown. The aim of this study was to investigate the expression of MTERF3 in breast carcinoma and to analyze its clinicopathological significance, and to examine the potential prognostic value of MTERF3 in breast cancer. METHODS: The protein expression levels of MTERF3 in MCF7 (Luminal A), BT-474 (Luminal B), SKBR3 (HER2 overexpression), MDA-MB-468 (Basal like) and MCF10A cell lines were detected by Western blotting. Immunohistochemistry (IHC), Western blotting, and semiquantitative RT-PCR were performed to analyze the protein and mRNA expression levels of MTERF3 in 58 breast cancer tissues and 58 noncancerous breast tissues. The MTERF3 expression data and clinical information from breast cancer patients were downloaded from the TCGA dataset by using the R3.6.1 software. Then the relationship between the expression level of MTERF3 and clinicopathological characteristics and the prognostic value was analyzed. A Cox regression model was performed for the multivariate analysis of the factors that affected the prognosis of breast cancer. The association between the expression levels of MTERF3 and other mitochondrial regulatory genes was analyzed with GEPIA. RESULTS: MTERF3 is upregulated in breast cancer cell lines compared to noncancerous breast cell line. The IHC results showed that the MTERF3 protein was located in the cytoplasm, and the rate of positive expression in breast cancer tissue was significantly upregulated compared with the adjacent normal tissue. The mRNA and protein expression levels of MTERF3 in breast cancer tissues were significantly higher than that in breast tissues. Moreover, the expression of MTERF3 was significantly correlated with ER status, PR status, breast cancer molecular typing, cancer type, histological diagnosis and primary site (P<0.05). Further analysis showed MTERF3 expression was not related to prognosis. Multivariate Cox regression analysis showed that age, metastasis status and tumor type were independent prognostic factors for breast cancer patients. The expression levels of MTERF3 were positively correlated with the TFAM, TFB1M, TFB2M, MTERF1, TEFM and MFN1 genes but negatively correlated with the MTERF4 and PINK1 genes. In addition, the expression levels of MTERF3 were not correlated with the MTERF2 gene. CONCLUSIONS: MTERF3 was significantly upregulated in breast cancer cells and tissues compared with noncancerous cells and tissues. Moreover, the expression level of MTERF3 was correlated with ER status, PR status, breast cancer molecular typing, cancer type, histological diagnosis and primary site. These findings suggested that the upregulation of MTERF3 may be used as a diagnostic and therapeutic target in breast carcinoma.

5.
Transl Cancer Res ; 9(5): 3610-3622, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-35117724

RESUMO

BACKGROUND: Mitochondrial transcription elongation factor (TEFM) is a key molecule for mitochondrial DNA (mtDNA) replication-transcription switch. TEFM regulates both transcription elongation and RNA processing in mitochondria. However, the expression level and prognostic value of TEFM in low grade glioma (LGG) remain unclear. Therefore, in this study, we aimed to evaluate the clinical significance and the prognostic value of TEFM in LGG based on publicly available data. METHODS: The relative mRNA expression level of TEFM in non-tumor brain tissues and LGG tissues were retrieved from Gene Expression Profiling Interactive Analysis (GEPIA). The RNA-Seq expression of TEFM and clinical information in LGG patients were collected from the updated the Cancer Genome Atlas (TCGA) database by using R3.6.1 software. Next, the relationship between the mRNA expression of TEFM and clinicopathological characteristics were analyzed. Kaplan-Meier survival curves of overall survival (OS) and disease-free survival (DFS) were implemented for the relationship between the mRNA expression of TEFM and the prognosis of LGG patients. A Cox regression model was performed for the multivariate analysis of the factors affected the prognosis of LGG patients. GEPIA online tool was used to analyze the correlation between TEFM gene expression level and other related mitochondrial regulatory genes in LGG. Finally, The Gene Set Enrichment Analysis (GSEA) was performed to identify cell processes and molecular signaling cascades affected by TEFM. RESULTS: GEPIA analysis showed that the mRNA expression levels of TEFM in LGG were significantly higher than that of non-tumor tissue. Moreover, the mRNA expression of TEFM is significantly correlated with age, World Health Organization (WHO) grade, pathological types, headache history and supratentorial location (P<0.05). Kaplan-Meier analysis showed that a high expression level of TEFM mRNA indicated a poor prognosis in OS rate (log-rank, P<0.01). Multivariate Cox regression analysis showed that age, WHO grade, pathological types and supratentorial location were the independent prognostic factors of LGG patients. The mRNA expression levels of TEFM gene were positively correlated with the TFAM, TFB1M, TFB2M, MTERF1-F4 and NRF1 gene (P<0.01, R>0), but negatively correlated with the POLRMT gene (P<0.01, R=-0.18) in LGG. The GSEA revealed that genes associated with the cell cycle, RNA degradation, spliceosome, and ubiquitin mediated proteolysis signaling pathway were remarkably enriched in higher-TEFM versus lower-TEFM tumors. CONCLUSIONS: Our findings disclosed that the expression of TEFM mRNA was significantly upregulated in human LGG tissues compared to non-tumor brain tissues. More importantly, the elevated expression of TEFM mRNA may potentially predict poor OS in LGG patients.

6.
J Gastrointest Oncol ; 11(6): 1291-1304, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33457002

RESUMO

BACKGROUND: Mitochondrial transcription elongation factor (TEFM) is an essential molecule that regulates the replication-transcription switch of mitochondrial DNA. TEFM modulates both transcription elongation and RNA processing in mitochondria. The purpose of the present study was to determine the association of TEFM with tumor progression and prognosis in hepatocellular carcinoma (HCC) patients. METHODS: The different protein expression level of TEFM among HCC cell lines was detected by Western blotting. The gene expression profiling interactive analysis (GEPIA) was used to dynamically analyze the mRNA expression of TEFM gene in different stages of HCC. The protein and mRNA expression levels of TEFM were detected by immunohistochemistry, Western blotting and qRT-PCR. The mRNA-SeqV2 expression of TEFM and clinical information of HCC patients were downloaded from the TCGA database by using R3.6.3 software. Next, the relationships between the expression level of TEFM and clinicopathological characteristics and the prognostic value of TEFM were analyzed. A Cox regression model was used for multivariate analysis of the factors that affected the prognosis of HCC. Finally, the association between the expression levels of TEFM and other mitochondrial regulatory genes and HCC biomarker genes was analyzed by GEPIA. RESULTS: TEFM is upregulated in HCC cell lines compared to noncancerous liver cell line. TEFM protein and mRNA expression levels in HCC tissues were significantly upregulated compared with those in noncancerous liver tissues. In addition, the mRNA expression level of TEFM was significantly correlated with sex, serum AFP level, and vascular invasion (P<0.05). Further analysis showed that high expression level of TEFM was unfavorable in terms of the prognosis of patients with HCC. Cox multivariate regression analysis showed that patient age, vascular invasion, and TEFM expression were independent factors affecting the prognosis of HCC patients (P<0.05). The expression level of the TEFM gene was significantly positively correlated with the expression of multiple mitochondrial regulatory genes and biomarker genes of HCC (P<0.01, R>0). CONCLUSIONS: Our findings reveal that TEFM may play an important role in the progression of HCC. More importantly, the elevated expression of TEFM may potentially predict poor overall survival (OS) and disease-free survival (DFS) in patients with HCC.

7.
Acta Biochim Biophys Sin (Shanghai) ; 51(7): 707-714, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31187140

RESUMO

Alteration in cellular energy metabolism plays a critical role in the development and progression of cancer. Leptin is a hormone secreted by adipose tissue. Recent reports have shown that leptin can induce cancer cell proliferation and regulate cell energy metabolism, but the regulatory mechanism is still unclear. Here, we showed that leptin could promote cell proliferation and maintain high adenosine triphosphate levels in HCT116 and MCF-7 cells. The expression levels of carnitine palmitoyl transferase 1A (CPT1A), pyruvate dehydrogenase, succinate dehydrogenase subunit A and mitochondrial respiratory chain-associated proteins NADH dehydrogenase 1 (ND1), NADH:ubiquinone oxidoreductase subunit B8, and mitochondrial transcription factor A (TFAM) were distinctly increased in leptin-treated HCT116 and MCF-7 cells, while fatty acid synthase and lactate dehydrogenase expression were downregulated. Simultaneously, we found that c-Myc and peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1) protein expression levels were significantly increased. These results indicated that leptin boosted fatty acid ß-oxidation and the tricarboxylic acid cycle, enhanced oxidative phosphorylation (OXPHOS) activity, and inhibited fatty acid synthesis and glycolysis in tumor cells. Gene transfection experiments revealed that leptin could induce the expression of c-Myc. Moreover, the expressions of PGC-1, CPT1A, and TFAM proteins were downregulated in HCT116 cells with low expression of c-Myc, and the expression levels of these proteins were increased in HCT116 cells overexpressing c-Myc. These findings suggest that leptin plays an important role in the regulation of energy metabolism in tumor cells. It may regulate fatty acid oxidation and OXPHOS of tumor cells by regulating the c-Myc/PGC-1 pathway. Targeting metabolic pathways for cancer treatment has been investigated as potential preventive or therapeutic methods. This study has important implications for the clinical therapy of tumor cell metabolism through hormone regulation.


Assuntos
Ácidos Graxos/metabolismo , Leptina/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HEK293 , Humanos , Leptina/genética , Leptina/metabolismo , Células MCF-7 , Redes e Vias Metabólicas/efeitos dos fármacos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Oxirredução/efeitos dos fármacos
8.
Int J Clin Exp Pathol ; 12(5): 1909-1920, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31934014

RESUMO

Mitochondrial transcription termination factor 3 (MTERF3) is a negative regulator of mitochondrial transcription. MTERF3 is overexpressed in liver cancer, pancreatic cancer, lung cancer, and breast cancer. However, whether MTERF3 is up-regulated in brain glioma is still unclear. The aim of this study was to investigate the expression and clinicopathological significance of MTERF3 in brain glioma and to analyze its potential prognostic value in brain glioma. Immunohistochemistry, Western blot, and a semi-quantitative RT-PCR were performed to analyze the protein and mRNA expression levels of MTERF3 in 28 human brain glioma tissues and 10 noncancerous brain tissues. The expression data of MTERF3 and its clinical information in brain glioma were downloaded from the TCGA dataset using R 2.15.3 software. The relationship between the expression of MTERF3 and its clinicopathological characteristics and its prognostic value was analyzed. A Cox regression model was used for a multivariate analysis of the factors affecting the prognosis of brain glioma. The immunohistochemistry results showed that the MTERF3 protein is located in the cytoplasm, and the positive expression rate of the MTERF3 protein in brain glioma tissues is 64.29%. We found that the positive expression rate of the MTERF3 protein in high-grade glioma tissues (81.25%) is higher than it is in low-grade glioma tissues (41.67%). The expression levels of the MTERF3 mRNA and protein in brain glioma tissues are significantly higher than they are in the noncancerous brain tissues. Moreover, the expression of MTERF3 is significantly correlated with age, tumor type, and pathological classification (P<0.05). A Kaplan-Meier analysis showed that a high expression level of MTERF3 mRNA indicated a poor prognosis (log rank P<0.01). Furthermore, a multivariate Cox regression analysis showed that age and tumor type were independent prognostic factors for brain glioma patients. A GEPIA analysis suggested that the expression levels of MTERF3 are positively correlated with the TFAM, TFB1M, TFB2M, MTERF1, MTERF2, TEFM, and MFN1 genes, but negatively correlated with the PINK1 gene. The expression level of MTERF3 had no correlation with the MTERF4 gene. In conclusion, these data indicate that the expression of MTERF3 in glioma tissue samples can be used as a prognostic factor for patients with glioma and that a high MTERF3 expression correlates with a poor prognosis in glioma patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...