Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612345

RESUMO

The Amur tiger is an important endangered species in the world, and its re-identification (re-ID) plays an important role in regional biodiversity assessment and wildlife resource statistics. This paper focuses on the task of Amur tiger re-ID based on visible light images from screenshots of surveillance videos or camera traps, aiming to solve the problem of low accuracy caused by camera perspective, noisy background noise, changes in motion posture, and deformation of Amur tiger body patterns during the re-ID process. To overcome this challenge, we propose a serial multi-scale feature fusion and enhancement re-ID network of Amur tiger for this task, in which global and local branches are constructed. Specifically, we design a global inverted pyramid multi-scale feature fusion method in the global branch to effectively fuse multi-scale global features and achieve high-level, fine-grained, and deep semantic feature preservation. We also design a local dual-domain attention feature enhancement method in the local branch, further enhancing local feature extraction and fusion by dividing local feature blocks. Based on the above model structure, we evaluated the effectiveness and feasibility of the model on the public dataset of the Amur Tiger Re-identification in the Wild (ATRW), and achieved good results on mAP, Rank-1, and Rank-5, demonstrating a certain competitiveness. In addition, since our proposed model does not require the introduction of additional expensive annotation information and does not incorporate other pre-training modules, it has important advantages such as strong transferability and simple training.

2.
Sci Rep ; 12(1): 8636, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606386

RESUMO

With the intensification of ecosystem damage, birds have become the symbolic species of the ecosystem. Ornithology with interdisciplinary technical research plays a great significance for protecting birds and evaluating ecosystem quality. Deep learning shows great progress for birdsongs recognition. However, as the number of network layers increases in traditional CNN, semantic information gradually becomes richer and detailed information disappears. Secondly, the global information carried by the entire input may be lost in convolution, pooling, or other operations, and these problems will weaken the performance of classification. In order to solve such problems, based on the feature spectrogram from the wavelet transform for the birdsongs, this paper explored the multi-scale convolution neural network (MSCNN) and proposed an ensemble multi-scale convolution neural network (EMSCNN) classification framework. The experiments compared the MSCNN and EMSCNN models with other CNN models including LeNet, VGG16, ResNet101, MobileNetV2, EfficientNetB7, Darknet53 and SPP-net. The results showed that the MSCNN model achieved an accuracy of 89.61%, and EMSCNN achieved an accuracy of 91.49%. In the experiments on the recognition of 30 species of birds, our models effectively improved the classification effect with high stability and efficiency, indicating that the models have better generalization ability and are suitable for birdsongs species recognition. It provides methodological and technical scheme reference for bird classification research.


Assuntos
Ecossistema , Redes Neurais de Computação , Reconhecimento Psicológico , Análise de Ondaletas
3.
Sensors (Basel) ; 23(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616618

RESUMO

The detection of water changes in plant stems by non-destructive online methods has become a hot spot in studying the physiological activity of plant water. In this paper, the ultrasonic radio-frequency echo (RFID) technique was used to detect water changes in stems. An algorithm (improved hybrid differential Akaike's Information Criterion (AIC)) was proposed to automatically compute the position of the primary ultrasonic echo of stems, which is the key parameter of water changes in stems. This method overcame the inaccurate location of the primary echo, which was caused by the anisotropic ultrasound propagation and heterogeneous stems. First of all, the improved algorithm was analyzed and its accuracy was verified by a set of simulated signals. Then, a set of cutting samples from stems were taken for ultrasonic detection in the process of water absorption. The correlation between the moisture content of stems and ultrasonic velocities was computed with the algorithm. It was found that the average correlation coefficient of the two parameters reached about 0.98. Finally, living sunflowers with different soil moistures were subjected to ultrasonic detection from 9:00 to 18:00 in situ. The results showed that the soil moisture and the primary ultrasonic echo position had a positive correlation, especially from 12:00 to 18:00; the average coefficient was 0.92. Meanwhile, our results showed that the ultrasonic detection of sunflower stems with different soil moistures was significantly distinct. Therefore, the improved AIC algorithm provided a method to effectively compute the primary echo position of limbs to help detect water changes in stems in situ.


Assuntos
Solo , Água , Ultrassonografia , Algoritmos , Caules de Planta
4.
Sensors (Basel) ; 22(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009658

RESUMO

In recent years, separating effective target signals from mixed signals has become a hot and challenging topic in signal research. The SI-BSS (Blind source separation (BSS) based on swarm intelligence (SI) algorithm) has become an effective method for the linear mixture BSS. However, the SI-BSS has the problem of incomplete separation, as not all the signal sources can be separated. An improved algorithm for BSS with SI based on signal cross-correlation (SI-XBSS) is proposed in this paper. Our method created a candidate separation pool that contains more separated signals than the traditional SI-BSS does; it identified the final separated signals by the value of the minimum cross-correlation in the pool. Compared with the traditional SI-BSS, the SI-XBSS was applied in six SI algorithms (Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE), Sine Cosine Algorithm (SCA), Butterfly Optimization Algorithm (BOA), and Crow Search Algorithm (CSA)). The results showed that the SI-XBSS could effectively achieve a higher separation success rate, which was over 35% higher than traditional SI-BSS on average. Moreover, SI-SDR increased by 14.72 on average.


Assuntos
Algoritmos , Borboletas , Animais , Inteligência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...