Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 268: 110319, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32510455

RESUMO

Literature related to the carbon cycle and climate contains contradictory results with regard to whether agricultural practices increase or mitigate emission of greenhouse gases (GHGs). One opinion is that anthropogenic activities have distinct carbon footprints - measured as total emissions of GHGs resulting from an activity, in this case, "agricultural operations". In contrast, it is argued that agriculture potentially serves to mitigate GHGs emissions when the best management practices are implemented. We review the literature on agricultural carbon footprints in the context of agricultural practices including soil, water and nutrient management. It has been reported that the management practices that enhance soil organic carbon (SOC) in arid and semi-arid areas include conversion of conventional tillage practices to conservation tillage approaches. We found that agricultural management in arid and semi-arid regions, which have specific characteristics related to high temperatures and low rainfall conditions, requires different practices for maintenance and restoration of SOC and for control of soil erosion compared to those used in Mediterranean, tropical regions. We recommend that in order to meet the global climate targets, quantification of net global warming potential of agricultural practices requires precise estimates of local, regional and global carbon budgets. We have conducted and present a case study for observing the development of deep soil carbon profile resulting from a 10-year wheat-cotton and wheat-maize rotation on semi-arid lands. Results showed that no tillage with mulch application had 14% (37.2 vs 43.3 Mg ha-1) higher SOC stocks in comparison to conventional tillage with mulch application. By implementing no tillage in conjunction with mulch application, lower carbon losses from soil can mitigate the risks associated with global warming. Therefore, it is necessary to reconsider agricultural practices and soil erosion after a land-use change when calculating global carbon footprints.


Assuntos
Carbono , Solo , Agricultura , Ciclo do Carbono , Zea mays
2.
Environ Sci Pollut Res Int ; 27(32): 39717-39725, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31713143

RESUMO

Lithium (Li) exploitation for industrial and domestic use is resulting in a buildup of the element in various environmental components that results in potential toxicity to living systems. Therefore, a soil culture experiment was conducted to evaluate the effects of increasing concentration of Li (0, 20, 40, 60, and 80 mg kg-1 soil) on spinach growth, the effects of Li uptake, and its effects on various physiological attributes of the crop. The results showed that lower levels of Li in soil (20 mg Li kg-1) improve the growth of spinach plants, while a higher concentration of applied Li enhanced the pigment contents. Higher concentrations of Li in soil interfered with potassium and calcium uptake in plants. Moreover, increasing Li concentration resulted in higher activities of antioxidant enzymes activity in spinach shoots. From these results, it is concluded that spinach shoot accumulated higher concentrations of Li without showing any visual toxicity symptoms. Therefore, the study concludes that Li ion was mostly deposited in leaves rather than in roots which may cause potential human health risk on the consumption of Li-contaminated plants. Therefore, the cultivation of leafy vegetables in Li-affected soils should be avoided to reduce the potential human health risks.


Assuntos
Poluentes do Solo , Solo , Humanos , Lítio/análise , Poluentes do Solo/análise , Spinacia oleracea , Verduras
3.
Ecotoxicol Environ Saf ; 144: 11-18, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28599126

RESUMO

Silicon (Si) is the 2nd most abundant element in soil which is known to enhance stress tolerance in wide variety of crops. Arsenic (As), a toxic metalloid enters into the human food chain through contaminated water and food or feed. To alleviate the deleterious effect of As on human health, it is a need of time to find out an effective strategy to reduce the As accumulation in the food chain. The experiments were conducted during September-December 2014, and 2016 to optimize Si concentration for rice (Oryza sativa L.) exposed to As stress. Further experiment were carried out to evaluate the effect of optimum Si on rice seed germination, seedling growth, phosphorus and As uptake in rice plant. During laboratory experiment, rice seeds were exposed to 150 and 300µM As with and without 3mM Si supplementation. Results revealed that As application, decreased the germination up to 40-50% as compared to control treatment. Arsenic stress also significantly (P < 0.05) reduced the seedling length but Si supplementation enhanced the seedlings length. Maximum seedling length (4.94cm) was recorded for 3mM Si treatment while, minimum seedling length (0.60cm) was observed at day7 by the application of 300µM As. Silicon application resulted in 10% higher seedling length than the control treatment. In soil culture experiment, plants were exposed to same concentrations of As and Si under aerobic and anaerobic conditions. Irrigation water management, significantly (P˂0.05) affected the plant growth, Si and As concentrations in the plant. Arsenic uptake was relatively less under aerobic conditions. The maximum As concentration (9.34 and 27.70mgkg DW-1 in shoot and root, respectively) was found in plant treated with 300µM As in absence of Si under anaerobic condition. Similarly, anaerobic condition resulted in higher As uptake in the plants. The study demonstrated that aerobic cultivation is suitable to decrease the As uptake and in rice exogenous Si supply is beneficial to decrease As uptake under both anaerobic and aerobic conditions.


Assuntos
Irrigação Agrícola , Arsênio/toxicidade , Germinação/efeitos dos fármacos , Oryza/efeitos dos fármacos , Fósforo/análise , Silício/farmacologia , Poluentes do Solo/toxicidade , Aerobiose , Anaerobiose , Arsênio/análise , Humanos , Modelos Teóricos , Oryza/química , Oryza/crescimento & desenvolvimento , Poluentes do Solo/análise
4.
Environ Sci Pollut Res Int ; 24(10): 9142-9158, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28160172

RESUMO

Arsenic (As) is a toxic metalloid. Serious concerns have been raised in literature owing to its potential toxicity towards living beings. The metalloid causes various water- and food-borne diseases. Among food crops, rice contains the highest concentrations of As. Consuming As-contaminated rice results in serious health issues. Arsenic concentration in rice is governed by various factors in the rhizosphere such as availability and concentration of various mineral nutrients (iron, phosphate, sulfur and silicon) in soil solution, soil oxidation/reduction status, inter-conversion between organic and inorganic As compounds. Agronomic and civil engineering methods can be adopted to decrease As accumulation in rice. Agronomic methods such as improving soil porosity/aeration by irrigation management or creating the conditions favorable for As-precipitate formation, and decreasing As uptake and translocation by adding a inorganic nutrients that compete with As are easy and cost effective techniques at field scale. This review focuses on the factors regulating and competing As in soil-plant system and As accumulation in rice grains. Therefore, it is suggested that judicious use of water, management of soil, antagonistic effects of various inorganic plant-nutrients to As should be considered in rice cultivated areas to mitigate the building up of As in human food chain and with minimum negative impact to the environment.


Assuntos
Arsênio , Oryza/efeitos dos fármacos , Humanos , Rizosfera , Solo , Poluentes do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...