Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nanomaterials (Basel) ; 14(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998741

RESUMO

This study reports a novel CuSe-TiO2-GO composite, synthesized by a facile hydrothermal method at a controlled temperature, and investigates its electrochemical performance for supercapacitors (SCs) and photocatalytic behavior for degrading methylene blue (MB) dye. The compositional phase structure and chemical bond interaction were thoroughly investigated. The as-fabricated pristine, binary, and ternary composites underwent comprehensive characterization employing spectroscopic techniques and electrochemical analysis. Compared with pure and binary compounds (CuSe, TiO2, and binary CuSe-TiO2 composites), the ternary CuSe-TiO2-GO composites demonstrated a high degradation efficiency while degrading MB in less than just 80 min (240 min, 100 min, and 140 min, respectively). The photocatalytic activity of the ternary CuSe-TiO2-GO composites is enhanced due to the highly positive conduction band of CuSe, leading to the quick excitation of electrons to the conduction band of CuSe. Subsequently, graphene oxide (GO) left holes on the photocatalyst surface for MB, as GO assisted the photoexcited electron-hole pairs, resulting in enhanced photocatalytic performance. The CuSe-TiO2-GO electrode for the supercapacitor indicates a 310.6 F/g and 135.2 F/g capacitance when the discharge current upsurges from 1 to 12 A/g. The good photocatalytic and energy storage performance is due to the smaller charge transfer resistance, which promotes efficient separation of electron-hole pairs.

3.
Sci Rep ; 13(1): 20620, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996484

RESUMO

This work presents an optically transparent and flexible MIMO antenna that features two square patch elements placed in close proximity, aiming to meet the demands of compactness, flexibility, optical transparency, and visual appeal for IoT applications and future 5G wireless communication. The design includes a simple offset fed configuration to achieve the required isolation and impedance matching. It simplifies the process of creating closely spaced transparent MIMO antenna configurations. By optimizing and analyzing this structure, the antenna achieves better isolation and diversity gain performance, even when the patch elements are positioned very close to each other. To achieve optical transparency and flexibility, the antenna uses thin polyethylene terephthalate (PET) material as a substrate, which is a thermoplastic polymer resin from the polyester family. The wired metal mesh parameters for conducting parts of the MIMO antenna and offset position of the feed are carefully optimized to achieve required optical transparency, isolation, impedance matching and radiation performance without any complex decoupling or impedance matching network.

4.
Sci Rep ; 13(1): 16132, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752140

RESUMO

In this letter, a compact, planar circularly polarized (CP) sub-GHz slot-based multiple-input-multiple-output (MIMO) antenna with dual sense CP along with polarization bandwidth reconfigurability is presented. The pentagonal reactively loaded slot is fed by two folded tapered feedlines to achieve CP. The antenna offers left-hand-circular polarization (RHCP) with the as well as right hand circular polarization (LHCP). The antenna exhibit linearly polarization (LP) by exciting two ports simultaneously. Moreover, the antenna CP resonance can be reconfigured by varying the capacitance of the varactor diode. The antenna has a wide -10 dB operating frequency band from 578-929 MHz. while the axial ratio (AR) bandwidth ranges from 490-810 MHz. Moreover, the two elements MIMO are optimized and placed on compact dimensions 100 × 100 × 0.76 mm3 to realize pattern diversity. The antenna's key characteristics are compact size, wide-band sub-GHz operation, dual sense CP, polarization bandwidth reconfigurability and good MIMO performance. Thus, it is a suitable candidate to be utilized in CubeSats applications in sub-GHz bands.

5.
Int J Biol Macromol ; 251: 126287, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37573913

RESUMO

Cellulose nanocrystals (CNCs) have gained significant attraction from both industrial and academic sectors, thanks to their biodegradability, non-toxicity, and renewability with remarkable mechanical characteristics. Desirable mechanical characteristics of CNCs include high stiffness, high strength, excellent flexibility, and large surface-to-volume ratio. Additionally, the mechanical properties of CNCs can be tailored through chemical modifications for high-end applications including tissue engineering, actuating, and biomedical. Modern manufacturing methods including 3D/4D printing are highly advantageous for developing sophisticated and intricate geometries. This review highlights the major developments of additive manufactured CNCs, which promote sustainable solutions across a wide range of applications. Additionally, this contribution also presents current challenges and future research directions of CNC-based composites developed through 3D/4D printing techniques for myriad engineering sectors including tissue engineering, wound healing, wearable electronics, robotics, and anti-counterfeiting applications. Overall, this review will greatly help research scientists from chemistry, materials, biomedicine, and other disciplines to comprehend the underlying principles, mechanical properties, and applications of additively manufactured CNC-based structures.

6.
Sci Rep ; 13(1): 9900, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336998

RESUMO

A miniaturized folded dipole patch antenna (FDPA) design for biomedical applications operating at sub 1 GHz (434 MHz) band is presented. Antenna is fabricated on FR-4 substrate material having dimensions of 16.40 mm [Formula: see text] 8.60 mm [Formula: see text] 1.52 mm (0.023[Formula: see text] [Formula: see text] 0.012[Formula: see text] [Formula: see text] 0.002[Formula: see text]). Indirect feed coupling is applied through two parallel strips at bottom layer of the substrate. The antenna size is reduced by 83% through lumped inductor placed at the center path of the radiating FDPA, suitable for biomedical (implantable) applications and hyperthermia. Moreover, Impedance matching is achieved without using any Balun transformer or any other complex matching network. The proposed antenna provides an impedance bandwidth of 6 MHz (431-437 MHz) below - 10 dB and a gain of - 31 dB at 434 MHz. The designed antenna is also placed on a human body model to evaluate its performance for hyperthermia through Specific Absorption Rate (SAR), Effective Field Size (EFS), and penetration depth (PD).


Assuntos
Fontes de Energia Elétrica , Febre , Humanos , Impedância Elétrica , Hipertermia
7.
Asian J Pharm Sci ; 18(3): 100812, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37274921

RESUMO

Biopolymers are promising environmentally benign materials applicable in multifarious applications. They are especially favorable in implantable biomedical devices thanks to their excellent unique properties, including bioactivity, renewability, bioresorbability, biocompatibility, biodegradability and hydrophilicity. Additive manufacturing (AM) is a flexible and intricate manufacturing technology, which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems. Three-dimensional (3D) printing of these sustainable materials is applied in functional clinical settings including wound dressing, drug delivery systems, medical implants and tissue engineering. The present review highlights recent advancements in different types of biopolymers, such as proteins and polysaccharides, which are employed to develop different biomedical products by using extrusion, vat polymerization, laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional (4D) bioprinting techniques. This review also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds. This work also addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AM techniques. Ideally, there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas. We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future.

8.
Ann Biomed Eng ; 51(8): 1683-1712, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37261588

RESUMO

Bioprinting is an innovative and emerging technology of additive manufacturing (AM) and has revolutionized the biomedical sector by printing three-dimensional (3D) cell-laden constructs in a precise and controlled manner for numerous clinical applications. This approach uses biomaterials and varying types of cells to print constructs for tissue regeneration, e.g., cardiac, bone, corneal, cartilage, neural, and skin. Furthermore, bioprinting technology helps to develop drug delivery and wound healing systems, bio-actuators, bio-robotics, and bio-sensors. More recently, the development of four-dimensional (4D) bioprinting technology and stimuli-responsive materials has transformed the biomedical sector with numerous innovations and revolutions. This issue also leads to the exponential growth of the bioprinting market, with a value over billions of dollars. The present study reviews the concepts and developments of 3D and 4D bioprinting technologies, surveys the applications of these technologies in the biomedical sector, and discusses their potential research topics for future works. It is also urged that collaborative and valiant efforts from clinicians, engineers, scientists, and regulatory bodies are needed for translating this technology into the biomedical, pharmaceutical, and healthcare systems.


Assuntos
Bioimpressão , Engenharia Tecidual , Engenharia Tecidual/métodos , Bioimpressão/métodos , Impressão Tridimensional , Materiais Biocompatíveis , Tecnologia
9.
Micromachines (Basel) ; 14(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37374754

RESUMO

A compact, conformal, all-textile wearable antenna is proposed in this paper for the 2.45 GHz ISM (Industrial, Scientific and Medical) band. The integrated design consists of a monopole radiator backed by a 2 × 1 Electromagnetic Band Gap (EBG) array, resulting in a small form factor suitable for wristband applications. An EBG unit cell is optimized to work in the desired operating band, the results of which are further explored to achieve bandwidth maximization via floating EBG ground. A monopole radiator is made to work in association with the EBG layer to produce the resonance in the ISM band with plausible radiation characteristics. The fabricated design is tested for free space performance analysis and subjected to human body loading. The proposed antenna design achieves bandwidth of 2.39 GHz to 2.54 GHz with a compact footprint of 35.4 × 82.4 mm2. The experimental investigations reveal that the reported design adequately retains its performance while operating in close proximity to human beings. The presented Specific Absorption Rate (SAR) analysis reveals 0.297 W/kg calculated at 0.5 W input power, which certifies that the proposed antenna is safe for use in wearable devices.

10.
Int J Biol Macromol ; 218: 930-968, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35896130

RESUMO

The three-dimensional printing (3DP) also known as the additive manufacturing (AM), a novel and futuristic technology that facilitates the printing of multiscale, biomimetic, intricate cytoarchitecture, function-structure hierarchy, multi-cellular tissues in the complicated micro-environment, patient-specific scaffolds, and medical devices. There is an increasing demand for developing 3D-printed products that can be utilized for organ transplantations due to the organ shortage. Nowadays, the 3DP has gained considerable interest in the tissue engineering (TE) field. Polylactide (PLA) and polycaprolactone (PCL) are exemplary biomaterials with excellent physicochemical properties and biocompatibility, which have drawn notable attraction in tissue regeneration. Herein, the recent advancements in the PLA and PCL biodegradable polymer-based composites as well as their reinforcement with hydrogels and bio-ceramics scaffolds manufactured through 3DP are systematically summarized and the applications of bone, cardiac, neural, vascularized and skin tissue regeneration are thoroughly elucidated. The interaction between implanted biodegradable polymers, in-vivo and in-vitro testing models for possible evaluation of degradation and biological properties are also illustrated. The final section of this review incorporates the current challenges and future opportunities in the 3DP of PCL- and PLA-based composites that will prove helpful for biomedical engineers to fulfill the demands of the clinical field.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Materiais Biocompatíveis/química , Humanos , Poliésteres/química , Polímeros , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
11.
PLoS One ; 17(7): e0271371, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802567

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0208857.].

12.
Molecules ; 27(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35684582

RESUMO

This study was designed to evaluate the emulsifying and rheological properties of acorn protein isolate (API) in different pH mediums (pH 3, 7 and 9) and in the presence of ionic salts (1 M NaCl and 1 M CaCl2). API shows higher solubility in distilled water at pH 7, while at the same pH, a decrease in solubility was observed for API in the presence of CaCl2 (61.30%). A lower emulsifying activity index (EAI), lower stability index (ESI), larger droplet sizes and slight flocculation were observed for API in the presence of salts at different pHs. Importantly, CaCl2 treated samples showed relevantly higher EAI (252.67 m2/g) and ESI (152.67 min) values at all pH as compared to NaCl (221.76 m2/g), (111.82 min), respectively. A significant increase in interfacial protein concentration (4.61 mg/m2) was observed for emulsion at pH 9 with CaCl2, while the major fractions of API were observed in an interfacial layer after SDS-PAGE analysis. All of the emulsion shows shear thinning behavior (τc > 0 and n < 1), while the highest viscosity was observed for emulsion prepared with CaCl2 at pH 3 (11.03 ± 1.62). In conclusion, API, in the presence of ionic salts at acidic, neutral and basic pH, can produce natural emulsions, which could be substitutes for synthetic surfactants for such formulations.


Assuntos
Quercus , Sais , Cloreto de Cálcio , Emulsificantes/química , Emulsões/química , Concentração de Íons de Hidrogênio , Proteínas , Reologia , Cloreto de Sódio
13.
Environ Sci Pollut Res Int ; 29(40): 60823-60831, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35437652

RESUMO

In recent years, biomass energy tends to be one of the important sources of renewable energy in the world. The main objective of current research is to evaluate the impact of biomass energy on the economic growth of NEXT-11 economies. The data used in "the study is based on panel data of NEXT-11 covering the period 1990 to 2019. The included variables are GDP, biomass energy (BE) school enrollment gross ratio (SEGR; trade openness (TO; population growth (PG; and CO2 emission (CO2)." For estimation, this study applied the fully modified ordinary least square (FMOLS) and dynamic ordinary least square (DOLS) approaches. The results of FMOLS and DOLS analysis indicate a statistically significant and positive relationship among all the variables in our sample of nations. According to the findings, an increase in biomass energy use tends to positively affect economic growth. To meet the challenge of global warming, these countries need to increase their technical development and inventions as well as they need to improve biomass energy use.


Assuntos
Dióxido de Carbono , Desenvolvimento Econômico , Biomassa , Dióxido de Carbono/análise , Análise dos Mínimos Quadrados , Energia Renovável
14.
PLoS One ; 17(4): e0260746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35381013

RESUMO

Climatic conditions play a significant role in the development of citrus canker caused by Xanthomonas citri pv. citri (Xcc). Citrus canker is regarded as one of the major threats being faced by citrus industry in citrus growing countries of the world. Climatic factors exert significant impacts on growth stage, host susceptibility, succulence, vigor, survival, multiplication rate, pathogen dispersion, spore penetration rate, and spore germination. Predicting the impacts of climatic factors on these traits could aid in the development of effective management strategies against the disease. This study predicted the impacts of environmental variables, i.e., temperature, relative humidity, rainfall, and wind speed the development of citrus canker through multiple regression. These environmental variables were correlated with the development of canker on thirty (30) citrus varieties during 2017 to 2020. Significant positive correlations were noted among environment variables and disease development modeled through multiple regression model (Y = +24.02 + 0.5585 X1 + 0.2997 X2 + 0.3534 X3 + 3.590 X4 + 1.639 X5). Goodness of fit of the model was signified by coefficient determination value (97.5%). Results revealed the optimum values of environmental variables, i.e., maximum temperature (37°C), minimum temperature (27°C), relative humidity (55%), rainfall (4.7-7.1 mm) and wind speed (8 Km/h), which were conducive for the development of citrus canker. Current study would help researchers in designing better management strategies against citrus canker disease under changing climatic conditions in the future.


Assuntos
Citrus , Xanthomonas , Doenças das Plantas
15.
ACS Appl Mater Interfaces ; 14(11): 13836-13847, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35286068

RESUMO

Both 3-hydroxy-2-butanone and triethylamine are highly toxic and harmful to human health, and their chronic inhalation can cause respiratory diseases, eye lesions, dermatitis, headache, dizziness, drowsiness, and even fatality. Developing sensors for detecting such toxic gases with low power consumption, high response with superselectivity, and stability is crucial for healthcare and environmental monitoring. This study presents a typical gas sensor fabricated based on AuPdO modified Cu-doped K2W4O13 nanowires, which can selectively detect 3-hydroxy-2-butanone and triethylamine at 120 and 200 °C, respectively. The sensor displays excellent sensing performance at reduced operating temperature, high selectivity, fast response/recovery, and stability, which can be attributed to a synergistic effect of Cu dopants and AuPdO nanoparticles on the K2W4O13 host. The enhanced sensing response and selectivity could be attributed to the oxygen vacancies/defects, bandgap excitation, the electronic sensitization, the reversible redox reaction of PdO and Cu, the cocatalytic activity of AuPdO, and Schottky barrier contacts at the interface of tungsten oxide and Au. The significant variations in the activation capacities of Cu-doped K2W4O13, Pd/PdO, and Au nanoparticles toward 3H-2B and TEA, and the diffusion depth of the two gases in the coated sensing layer may cause dual selectivity. The designed gas sensor materials can serve as a sensitive target for detecting toxic biomarkers and hold broad application prospects in food and environmental safety inspection.

16.
Saudi J Biol Sci ; 29(1): 444-452, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35002440

RESUMO

Climate change could be an existential threat to many crops. Drought and heat stress are becoming harder for cultivated crops. Cotton in Pakistan is grown under natural high temperature and low moisture, could be used as a source of heat and drought tolerance. Therefore, the study was conducted to morphological, physiological and molecular characterization of cotton genotypes under field conditions. A total of 25 cotton genotypes were selected from the gene pool of Pakistan based on tolerance to heat and drought stress. In field trail, the stress related traits like boll retention percentage, plant height, number of nodes and inter-nodal distance were recorded. In physiological assessment, traits such as photosynthesis rate, stomatal conductance, transpiration rate, leaf temperature, relative water content and excised leaf water loss were observed. At molecular level, a set of 19 important transcription factors, controlling drought/heat stress tolerance (HSPCB, GHSP26, HSFA2, HSP101, HSP3, DREB1A, DREB2A, TPS, GhNAC2, GbMYB5, GhWRKY41, GhMKK3, GhMPK17, GhMKK1, GhMPK2, APX1, HSC70, ANNAT8, and GhPP2A1) were analyzed from all genotypes. Data analyses depicted that boll retention percentage, photosynthesis, stomatal conductance, relative water content under the stress conditions were associated with the presence of important drought & heat TF/genes which depicts high genetic potential of Pakistani cotton varieties against abiotic stress. The variety MNH-886 appeared in medium plant height, high boll retention percentage, high relative water content, photosynthesis rate, stomatal conductance, transpiration rate and with maximum number transcription factors under study. The variety may be used as source material for heat and drought tolerant cotton breeding. The results of this study may be useful for the cotton breeders to develop genotype adoptable to environmental stresses under climate change scenario.

17.
Mol Biol Rep ; 48(2): 1069-1079, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33609263

RESUMO

Pakistan ranked highest with reference to average temperatures in cotton growing areas of the world. The heat waves are becoming more intense and unpredictable due to climate change. Identification of heat tolerant genotypes requires comprehensive screening using molecular, physiological and morphological analysis. Heat shock proteins play an important role in tolerance against heat stress. In the current study, eight heat stress responsive factors, proteins and genes (HSFA2, GHSP26, GHPP2A, HSP101, HSC70-1, HSP3, APX1 and ANNAT8) were evaluated morphologically and physiologically for their role in heat stress tolerance. For this purpose, cotton crop was grown at two temperature conditions i.e. normal weather and heat stress at 45 °C. For molecular analysis, genotypes were screened for the presence or absence of heat shock protein genes. Physiological analysis of genotypes was conducted to assess net photosynthesis, stomatal conductance, transpiration rate, leaf-air temperature and cell membrane stability under control as well as high temperature. The traits photosynthesis, cell membrane stability, leaf-air temperature and number of heat stress responsive factors in each genotypes showed a strong correlation with boll retention percentage under heat stress. The genotypes with maximum heat shock protein genes such as Cyto-177, MNH-886, VH-305 and Cyto-515 showed increased photosynthesis, stomatal conductance, negative leaf-air temperature and high boll retention percentage under heat stress condition. These varieties may be used as heat tolerant breeding material.


Assuntos
Gossypium/genética , Resposta ao Choque Térmico/genética , Fotossíntese/genética , Folhas de Planta/genética , Clorofila/genética , Secas , Genótipo , Gossypium/crescimento & desenvolvimento , Temperatura Alta , Paquistão , Melhoramento Vegetal , Folhas de Planta/crescimento & desenvolvimento
18.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-377432

RESUMO

Renessans is an iodine complex which has proven in vitro antiviral activity including Anti-SARS-CoV-2 activity. The present study was designed to determine its efficacy against SARS-CoV-2 in monkeys (Rhesus macaque). A total of 14 monkeys were divided into four groups: A) Prophylactic group (n=03), (B) Treatment group (n=03), (C) infection control group (n=04) and (D) negative control group (n=04) and were housed in BSL-3 Animal facility while group D was housed at another animal house. Group A was administered with Renessans @ 2.85 mg/7 kg from 5 days prior to the infection to 08 days post infections (DPI). Group B was administered with Renessans from 03-08 DPI @ 2.85 mg/7 kg. Group C was administered with WIF only. The infection @ 2 x 106 TCID of SARS-CoV-2 was given to all group monkeys through intranasal and oral route under anesthesia. Nasal swab samples (at different times) and fecal matter on daily basis were collected for the detection of SARS-CoV-2 through real-time quantitative PCR. Three monkeys (one from each of group A, B and C) were euthanized at 07 DPI to determine the gross pathological lesions and SARS-CoV-2 detection from internal tissues. Nasal swabs from all the monkeys from group A, B and C were positive for SARS-CoV-2 at 02 and 07 DPI (Day 05 of treatment). At 14 DPI, all (100%) nasal swabs from group A were negative for SARS-CoV-2 while 50% and 100% were positive from group B and C, respectively. At 21 DPI, monkeys from group B were negative and all in group C were still positive for SARS-CoV-2. Similarly, fecal matter of monkeys in group A and B was returned negative in significantly lesser time as compared to monkeys from infection control group. Based on these research findings it is concluded that the Renessans has in-vivo SARS-CoV-2 activity and may result in early clearance of SARS-CoV-2. Therefore, a clinical trial of the drug in COVID-19 patients may reveal its anti-COVID-19 potential.

19.
Nanomaterials (Basel) ; 10(9)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916991

RESUMO

A new micro heat exchanger was analyzed using numerical formulation of conjugate heat transfer for single-phase fluid flow across copper microchannels. The flow across bent channels harnesses asymmetric laminar flow and dean vortices phenomena for heat transfer enhancement. The single-channel analysis was performed to select the bent channel aspect ratio by varying width and height between 35-300 µm for Reynolds number and base temperature magnitude range of 100-1000 and 320-370 K, respectively. The bent channel results demonstrate dean vortices phenomenon at the bend for Reynolds number of 500 and above. Thermal performance factor analysis shows an increase of 18% in comparison to straight channels of 200 µm width and height. Alumina nanoparticles at 1% and 3% concentration enhance the Nusselt number by an average of 10.4% and 23.7%, respectively, whereas zirconia enhances Nusselt number by 16% and 33.9% for same concentrations. On the other hand, thermal performance factor analysis shows a significant increase in pressure drop at high Reynolds number with 3% particle concentration. Using zirconia for nanofluid, Nusselt number of the bent multi-channel model is improved by an average of 18% for a 3% particle concentration as compared to bent channel with deionized water.

20.
Food Chem ; 324: 126894, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32361094

RESUMO

This study aims to extract acorn protein isolate (API) from locally abundant waste acorn fruit and investigate its emulsification behavior by mixing different protein (0.1-2% w/v) and oil volume concentrations (5-45% v/v). Significant decrease in emulsifying activity index (EAI) and an increase in emulsifying stability index (ESI) were observed with an increase in API concentrations (P < 0.05). Droplet sizes of emulsions and viscosity were observed to decrease significantly (P < 0.05) with increase in API concentration while the increase was observed in interfacial protein concentration (Г). In contrast, increase in oil volume concentration results in increase of droplet sizes, packing fractions and viscosity, while decrease in Г values was observed. The results reveal that main fractions of API (66.2-14.4 kDa) were migrated to oil-water interface for emulsion stabilization. These results demonstrate the potential application of API in food formulation and development.


Assuntos
Emulsificantes/química , Óleos/química , Proteínas de Plantas/química , Quercus/metabolismo , Eletroforese em Gel de Poliacrilamida , Emulsões/química , Frutas/metabolismo , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...