Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Immun ; 10 Suppl 1: S5-S15, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19956101

RESUMO

The Type I Diabetes Genetics Consortium (T1DGC) Rapid Response Workshop was established to evaluate published candidate gene associations in a large collection of affected sib-pair (ASP) families. We report on our quality control (QC) and preliminary family-based association analyses. A random sample of blind duplicates was analyzed for QC. Quality checks, including examination of plate-panel yield, marker yield, Hardy-Weinberg equilibrium, mismatch error rate, Mendelian error rate, and allele distribution across plates, were performed. Genotypes from 2324 families within nine cohorts were obtained from a panel of 21 candidate genes, including 384 single-nucleotide polymorphisms on two genotyping platforms performed at the Broad Institute Center for Genotyping and Analysis (Cambridge, MA, USA). The T1DGC Rapid Response project, following rigorous QC procedures, resulted in a 2297 family, 9688 genotyped individual database on a single-candidate gene panel. The available data include 9005 individuals with genotype data from both platforms and 683 individuals genotyped (276 in Illumina; 407 in Sequenom) on only one platform.


Assuntos
Bases de Dados de Ácidos Nucleicos , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Controle de Qualidade
2.
Nat Genet ; 22(3): 231-8, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10391209

RESUMO

A major goal in human genetics is to understand the role of common genetic variants in susceptibility to common diseases. This will require characterizing the nature of gene variation in human populations, assembling an extensive catalogue of single-nucleotide polymorphisms (SNPs) in candidate genes and performing association studies for particular diseases. At present, our knowledge of human gene variation remains rudimentary. Here we describe a systematic survey of SNPs in the coding regions of human genes. We identified SNPs in 106 genes relevant to cardiovascular disease, endocrinology and neuropsychiatry by screening an average of 114 independent alleles using 2 independent screening methods. To ensure high accuracy, all reported SNPs were confirmed by DNA sequencing. We identified 560 SNPs, including 392 coding-region SNPs (cSNPs) divided roughly equally between those causing synonymous and non-synonymous changes. We observed different rates of polymorphism among classes of sites within genes (non-coding, degenerate and non-degenerate) as well as between genes. The cSNPs most likely to influence disease, those that alter the amino acid sequence of the encoded protein, are found at a lower rate and with lower allele frequencies than silent substitutions. This likely reflects selection acting against deleterious alleles during human evolution. The lower allele frequency of missense cSNPs has implications for the compilation of a comprehensive catalogue, as well as for the subsequent application to disease association.


Assuntos
Polimorfismo Genético , Alelos , Evolução Biológica , Frequência do Gene , Genes , Variação Genética , Humanos , Proteínas/genética , Análise de Sequência de DNA
3.
Anal Chem ; 70(11): 2303-10, 1998 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-9624902

RESUMO

We present a model that quantitatively describes the performance of microfabricated electrophoretic devices filled with linear polyacrylamide as replaceable sieving material for single-stranded DNA analyses. The dependence of resolution on various separation parameters such as selectivity, diffusion, injector size, device length, and channel folding was investigated. A previously predicted dependence of longitudinal diffusion coefficient on electric field strength has been verified. We have used this model to develop and optimize microfabricated electrophoretic devices for DNA analyses. For single-color DNA sequencing mixtures, we routinely achieve separations of 400 bases in under 14 min at 200 V/cm, and separation of 350 bases in only 7 min at 400 V/cm, with a minimum resolution of R = 0.5. Our results also indicate reduced fragment biasing and efficient sample stacking for DNA sample loading on microfabricated devices.


Assuntos
DNA de Cadeia Simples/análise , DNA de Cadeia Simples/química , Eletroforese Capilar/métodos , Resinas Acrílicas/química , Fragmentação do DNA , Difusão , Campos Eletromagnéticos , Dióxido de Silício/química , Espectrometria de Fluorescência
4.
Cell ; 90(4): 785-95, 1997 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-9288757

RESUMO

Telomerase, the ribonucleoprotein enzyme that elongates telomeres, is repressed in normal human somatic cells but is reactivated during tumor progression. We report the cloning of a human gene, hEST2, that shares significant sequence similarity with the telomerase catalytic subunit genes of lower eukaryotes. hEST2 is expressed at high levels in primary tumors, cancer cell lines, and telomerase-positive tissues but is undetectable in telomerase-negative cell lines and differentiated telomerase-negative tissues. Moreover, the message is up-regulated concomitant with the activation of telomerase during the immortalization of cultured cells and down-regulated during in vitro cellular differentiation. Taken together, these observations suggest that the induction of hEST2 mRNA expression is required for the telomerase activation that occurs during cellular immortalization and tumor progression.


Assuntos
Transformação Celular Neoplásica , Proteínas/genética , RNA , Telomerase/genética , Regulação para Cima , Sequência de Aminoácidos , Catálise , Diferenciação Celular , Mapeamento Cromossômico , Clonagem Molecular , Proteínas de Ligação a DNA , Humanos , Masculino , Dados de Sequência Molecular , Conformação Proteica , Proteínas/química , Alinhamento de Sequência , Telomerase/química , Telomerase/metabolismo , Testículo/química , Transcrição Gênica , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...