Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Stem Cells ; 13(1): 163-175, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32114738

RESUMO

BACKGROUND AND OBJECTIVES: Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibition was proved in streptozotocin (STZ)-diabetic rats. The present study aimed at investigating and comparing the therapeutic effect of bone marrow mesenchymal stem cells (BMMSCs), BMMSCs combined with ascorbic acid (AA) and SERCA1a gene transfected BMMSCs in induced type I diabetic myopathy of male albino rat. METHODS AND RESULTS: 54 rats were divided into donor group of 6 rats for isolation, propagation and characterization of BMMSCs and SERCA1a transfected BMMSCs, groups I∼V 48 rats. Group I of 8 control rats, group II (Diabetic) of 10 rats given STZ 50 mg/kg intraperitoneal, group III (BMMSCs) of 10 rats given STZ and BMMSCs intravenous (IV), group IV (BMMSCs and AA) of 10 rats given STZ, BMMSCs IV and AA 500 mg/kg and group V (SERCA 1a transfected BMMSCs) of 10 rats given STZ and SERCA1a transfected BMMSCs IV. The rats were sacrificed after 8 weeks. Gastrocnemius specimens were subjected to biochemical, histological, morphometric and statistical studies. Diabetic rats revealed inflammatory and degenerative muscle changes, a significant increase in blood glucose level, mean DNA fragmentation and mean MDA values and a significant decrease in mean GSH and catalase values, area of pale nuclei, area% of CD105 and CD34 +ve cells, SERCA1a protein and gene values. The morphological changes regressed by therapy. In group III significant decrease in DNA fragmentation and MDA, significant increase in GSH and catalase, significant increase in the mean area of pale nuclei, area % of CD105 and CD34 +ve cells versus diabetic group. In group IV, same findings as group III versus diabetic and BMMSCs groups. In group V, same findings as group IV versus diabetic and treated groups. Western blot and PCR proved a mean value of SERCA1a protein and gene comparable to the control group. Mean calcium concentration values revealed a significant increase in the diabetic group, in BMMSCs and AA group versus control and SERCA1a group. CONCLUSIONS: SERCA1a transfected BMMSCs proved a definite therapeutic effect, more remarkable than BMMSCs combined with AA. This effect was evidenced histologically and confirmed by significant changes in the biochemical tests indicating oxidative stress, muscle calcium concentration, morphometric parameters and PCR values of SERCA1a.

2.
Stem Cell Res Ther ; 6: 148, 2015 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-26296856

RESUMO

INTRODUCTION: Doxorubicin (DOX) is a well-known anticancer drug. However its clinical use has been limited due to cardiotoxic effects. One of the major concerns with DOX therapy is its toxicity in patients who are frail, particularly diabetics. Several studies suggest that mesenchymal stem cells (MSCs) have the potential to restore cardiac function after DOX-induced injury. However, limited data are available on the effects of MSC therapy on DOX-induced cardiac dysfunction in diabetics. Our objective was to test the efficacy of bone marrow-derived (BM-MSCs) and adipose-derived MSCs (AT-MSCs) from age-matched humans in a non-immune compromised rat model. METHODS: Diabetes mellitus was induced in rats by streptozotocin injection (STZ, 65 mg/kg b.w, i.p.). Diabetic rats were treated with DOX (doxorubicin hydrochloride, 2.5 mg/kg b.w, i.p) 3 times/wk for 2 weeks (DOX group); or with DOX+ GFP labelled BM-MSCs (2x106cells, i.v.) or with DOX + GFP labelled AT-MSCs (2x106cells, i.v.). Echocardiography and Langendorff perfusion analyses were carried out to determine the heart function. Immunostaining and western blot analysis of the heart tissue was carried out for CD31 and to assess inflammation and fibrosis. Statistical analysis was carried out using SPSS and data are expressed as mean ± SD. RESULTS: Glucose levels in the STZ treated groups were significantly greater than control group. After 4 weeks of intravenous injection, the presence of injected MSCs in the heart was confirmed through fluorescent microscopy and real time PCR for ALU transcripts. Both BM-MSCs and AT-MSCs injection prevented DOX-induced deterioration of %FS, LVDP, dp/dt max and rate pressure product. Staining for CD31 showed a significant increase in the number of capillaries in BM-MSCs and AT-MSCs treated animals in comparison to DOX treated group. Assessment of the inflammation and fibrosis revealed a marked reduction in the DOX-induced increase in immune cell infiltration, collagen deposition and αSMA in the BM-MSCs and AT-MSCs groups. CONCLUSIONS: In conclusion BM-MSCs and AT-MSCs were equally effective in mitigating DOX-induced cardiac damage by promoting angiogenesis, decreasing the infiltration of immune cells and collagen deposition.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Doxorrubicina/toxicidade , Traumatismos Cardíacos/terapia , Coração/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Adulto , Animais , Células Cultivadas , Diabetes Mellitus Experimental , Feminino , Traumatismos Cardíacos/induzido quimicamente , Humanos , Masculino , Ratos , Ratos Wistar
3.
Cell Transplant ; 24(9): 1813-27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25199146

RESUMO

Spinal cord injury (SCI) results in demyelination of surviving axons, loss of oligodendrocytes, and impairment of motor and sensory functions. We have developed a clinical strategy of cell therapy for SCI through the use of autologous bone marrow cells for transplantation to augment remyelination and enhance neurological repair. In a preclinical large mammalian model of SCI, experimental dogs were subjected to a clipping contusion of the spinal cord. Two weeks after the injury, GFP-labeled autologous minimally manipulated adherent bone marrow cells (ABMCs) were transplanted intrathecally to investigate the safety and efficacy of autologous ABMC therapy. The effects of ABMC transplantation in dogs with SCI were determined using functional neurological scoring, and the integration of ABMCs into the injured cords was determined using histopathological and immunohistochemical investigations and electron microscopic analyses of sections from control and transplanted spinal cords. Our data demonstrate the presence of GFP-labeled cells in the injured spinal cord for up to 16 weeks after transplantation in the subacute SCI stage. GFP-labeled cells homed to the site of injury and were detected around white matter tracts and surviving axons. ABMC therapy in the canine SCI model enhanced remyelination and augmented neural regeneration, resulting in improved neurological functions. Therefore, autologous ABMC therapy appears to be a safe and promising therapy for spinal cord injuries.


Assuntos
Células da Medula Óssea/citologia , Transplante de Medula Óssea , Regeneração Nervosa , Traumatismos da Medula Espinal/terapia , Animais , Antígenos CD/metabolismo , Células da Medula Óssea/metabolismo , Contusões , Modelos Animais de Doenças , Cães , Imuno-Histoquímica , Injeções Espinhais , Masculino , Microscopia de Fluorescência , Atividade Motora , Recuperação de Função Fisiológica , Medula Espinal/patologia , Traumatismos da Medula Espinal/etiologia , Transplante Autólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA