Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 10(2)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092942

RESUMO

Skeletal development is a complex process which requires the tight regulation of gene activation and suppression in response to local signaling pathways. Among these pathways, Notch signaling is implicated in governing cell fate determination, proliferation, differentiation and apoptosis of skeletal cells-osteoblasts, osteoclasts, osteocytes and chondrocytes. Moreover, human genetic mutations in Notch components emphasize the critical roles of Notch signaling in skeletal development and homeostasis. In this review, we focus on the physiological roles of Notch signaling in skeletogenesis, postnatal bone and cartilage homeostasis and fracture repair. We also discuss the pathological gain- and loss-of-function of Notch signaling in bone and cartilage, resulting in osteosarcoma and age-related degenerative diseases, such as osteoporosis and osteoarthritis. Understanding the physiological and pathological function of Notch signaling in skeletal tissues using animal models and human genetics will provide new insights into disease pathogenesis and offer novel approaches for the treatment of bone/cartilage diseases.


Assuntos
Doenças Ósseas/metabolismo , Condrogênese , Osteogênese , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Doenças Ósseas/patologia , Doenças Ósseas/fisiopatologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/fisiopatologia , Homeostase , Humanos , Células-Tronco/metabolismo , Células-Tronco/patologia
2.
Sci Signal ; 11(548)2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228226

RESUMO

Sustained activation of extracellular signal-regulated kinase (ERK) drives pathologies caused by mutations in fibroblast growth factor receptors (FGFRs). We previously identified the inositol phosphatase SHIP2 (also known as INPPL1) as an FGFR-interacting protein and a target of the tyrosine kinase activities of FGFR1, FGFR3, and FGFR4. We report that loss of SHIP2 converted FGF-mediated sustained ERK activation into a transient signal and rescued cell phenotypes triggered by pathologic FGFR-ERK signaling. Mutant forms of SHIP2 lacking phosphoinositide phosphatase activity still associated with FGFRs and did not prevent FGF-induced sustained ERK activation, demonstrating that the adaptor rather than the catalytic activity of SHIP2 was required. SHIP2 recruited Src family kinases to the FGFRs, which promoted FGFR-mediated phosphorylation and assembly of protein complexes that relayed signaling to ERK. SHIP2 interacted with FGFRs, was phosphorylated by active FGFRs, and promoted FGFR-ERK signaling at the level of phosphorylation of the adaptor FRS2 and recruitment of the tyrosine phosphatase PTPN11. Thus, SHIP2 is an essential component of canonical FGF-FGFR signal transduction and a potential therapeutic target in FGFR-related disorders.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Quinases da Família src/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular Tumoral , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosforilação , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Quinases da Família src/genética
3.
BMC Genet ; 12: 54, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21639918

RESUMO

BACKGROUND: Genetic interactions within hybrids influence their overall fitness. Understanding the details of these interactions can improve our understanding of speciation. One experimental approach is to investigate deviations from Mendelian expectations (segregation distortion) in the inheritance of mapped genetic markers. In this study, we used the copepod Tigriopus californicus, a species which exhibits high genetic divergence between populations and a general pattern of reduced fitness in F2 interpopulation hybrids. Previous studies have implicated both nuclear-cytoplasmic and nuclear-nuclear interactions in causing this fitness reduction. We identified and mapped population-diagnostic single nucleotide polymorphisms (SNPs) and used these to examine segregation distortion across the genome within F2 hybrids. RESULTS: We generated a linkage map which included 45 newly elucidated SNPs and 8 population-diagnostic microsatellites used in previous studies. The map, the first available for the Copepoda, was estimated to cover 75% of the genome and included markers on all 12 T. californicus chromosomes. We observed little segregation distortion in newly hatched F2 hybrid larvae (fewer than 10% of markers at p < 0.05), but strikingly higher distortion in F2 hybrid adult males (45% of markers at p < 0.05). Hence, segregation distortion was primarily caused by selection against particular genetic combinations which acted between hatching and maturity. Distorted markers were not distributed randomly across the genome but clustered on particular chromosomes. In contrast to other studies in this species we found little evidence for cytonuclear coadaptation. Instead, different linkage groups exhibited markedly different patterns of distortion, which appear to have been influenced by nuclear-nuclear epistatic interactions and may also reflect genetic load carried within the parental lines. CONCLUSION: Adult male F2 hybrids between two populations of T. californius exhibit dramatic segregation distortion across the genome. Distorted loci are clustered within specific linkage groups, and the direction of distortion differs between chromosomes. This segregation distortion is due to selection acting between hatching and adulthood.


Assuntos
Copépodes/genética , Hibridização Genética , Padrões de Herança , Polimorfismo de Nucleotídeo Único , Animais , Núcleo Celular/genética , Mapeamento Cromossômico/métodos , Cromossomos/genética , Cruzamentos Genéticos , Feminino , Biblioteca Gênica , Loci Gênicos , Genoma , Genótipo , Larva/genética , Masculino , Repetições de Microssatélites , Mitocôndrias/genética , Seleção Genética , Comportamento Sexual Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...