Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(15): 4319-4329, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567828

RESUMO

The discovery of magnetic order at the 2D limit has sparked new exploration of van der Waals magnets for potential use in spintronics, magnonics, and quantum information applications. However, many of these materials feature low magnetic ordering temperatures and poor air stability, limiting their fabrication into practical devices. In this Mini-Review, we present a promising material for fundamental studies and functional use: CrSBr, an air-stable, two-dimensional magnetic semiconductor. Our discussion highlights experimental research on bulk CrSBr, including quasi-1D semiconducting properties, A-type antiferromagnetic order (TN = 132 K), and strong coupling between its electronic and magnetic properties. We then discuss the behavior of monolayer and few-layer flakes and present a perspective on promising avenues for further studies on CrSBr.

2.
Nature ; 625(7995): 483-488, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233620

RESUMO

Heavy-fermion metals are prototype systems for observing emergent quantum phases driven by electronic interactions1-6. A long-standing aspiration is the dimensional reduction of these materials to exert control over their quantum phases7-11, which remains a significant challenge because traditional intermetallic heavy-fermion compounds have three-dimensional atomic and electronic structures. Here we report comprehensive thermodynamic and spectroscopic evidence of an antiferromagnetically ordered heavy-fermion ground state in CeSiI, an intermetallic comprising two-dimensional (2D) metallic sheets held together by weak interlayer van der Waals (vdW) interactions. Owing to its vdW nature, CeSiI has a quasi-2D electronic structure, and we can control its physical dimension through exfoliation. The emergence of coherent hybridization of f and conduction electrons at low temperature is supported by the temperature evolution of angle-resolved photoemission and scanning tunnelling spectra near the Fermi level and by heat capacity measurements. Electrical transport measurements on few-layer flakes reveal heavy-fermion behaviour and magnetic order down to the ultra-thin regime. Our work establishes CeSiI and related materials as a unique platform for studying dimensionally confined heavy fermions in bulk crystals and employing 2D device fabrication techniques and vdW heterostructures12 to manipulate the interplay between Kondo screening, magnetic order and proximity effects.

3.
Nature ; 609(7926): 282-286, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071189

RESUMO

The recent discoveries of two-dimensional (2D) magnets1-6 and their stacking into van der Waals structures7-11 have expanded the horizon of 2D phenomena. One exciting application is to exploit coherent magnons12 as energy-efficient information carriers in spintronics and magnonics13,14 or as interconnects in hybrid quantum systems15-17. A particular opportunity arises when a 2D magnet is also a semiconductor, as reported recently for CrSBr (refs. 18-20) and NiPS3 (refs. 21-23) that feature both tightly bound excitons with a large oscillator strength and potentially long-lived coherent magnons owing to the bandgap and spatial confinement. Although magnons and excitons are energetically mismatched by orders of magnitude, their coupling can lead to efficient optical access to spin information. Here we report strong magnon-exciton coupling in the 2D A-type antiferromagnetic semiconductor CrSBr. Coherent magnons launched by above-gap excitation modulate the exciton energies. Time-resolved exciton sensing reveals magnons that can coherently travel beyond seven micrometres, with a coherence time of above five nanoseconds. We observe these exciton-coupled coherent magnons in both even and odd numbers of layers, with and without compensated magnetization, down to the bilayer limit. Given the versatility of van der Waals heterostructures, these coherent 2D magnons may be a basis for optically accessible spintronics, magnonics and quantum interconnects.

4.
Nat Mater ; 21(7): 754-760, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513502

RESUMO

Semiconductors, featuring tunable electrical transport, and magnets, featuring tunable spin configurations, form the basis of many information technologies. A long-standing challenge has been to realize materials that integrate and connect these two distinct properties. Two-dimensional (2D) materials offer a platform to realize this concept, but known 2D magnetic semiconductors are electrically insulating in their magnetic phase. Here we demonstrate tunable electron transport within the magnetic phase of the 2D semiconductor CrSBr and reveal strong coupling between its magnetic order and charge transport. This provides an opportunity to characterize the layer-dependent magnetic order of CrSBr down to the monolayer via magnetotransport. Exploiting the sensitivity of magnetoresistance to magnetic order, we uncover a second regime characterized by coupling between charge carriers and magnetic defects. The magnetoresistance within this regime can be dynamically and reversibly tuned by varying the carrier concentration using an electrostatic gate, providing a mechanism for controlling charge transport in 2D magnets.


Assuntos
Magnetismo , Semicondutores , Fenômenos Magnéticos , Imãs
5.
ACS Cent Sci ; 7(8): 1317-1326, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34611547

RESUMO

The discovery of conductive and magnetic two-dimensional (2D) materials is critical for the development of next generation spintronics devices. Coordination chemistry in particular represents a highly versatile, though underutilized, route toward the synthesis of such materials with designer lattices. Here, we report the synthesis of a conductive, layered 2D metal-organic kagome lattice, Mn3(C6S6), using mild solution-phase chemistry. Strong geometric spin frustration in this system mediates spin freezing at low temperatures, which results in glassy magnetic dynamics consistent with a rare geometrically frustrated (topological) spin glass. Notably, we show that this geometric frustration engenders a large, tunable exchange bias of 1625 Oe in Mn3(C6S6), providing the first example of exchange bias in a coordination solid or a topological spin glass. Exchange bias is a critical component in a number of spintronics applications, but it is difficult to rationally tune, as it typically arises due to structural disorder. This work outlines a new strategy for engineering exchange bias systems using single-phase, crystalline lattices. More generally, these results demonstrate the potential utility of geometric frustration in the design of new nanoscale spintronic materials.

6.
ACS Appl Mater Interfaces ; 13(29): 34419-34427, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34275268

RESUMO

The application of metal-organic frameworks (MOFs) as electrocatalysts for small molecule activation has been an emerging topic of research. Previous studies have suggested that two-dimensional (2D) dithiolene-based MOFs are among the most active for the hydrogen evolution reaction (HER). Here, a three-dimensional (3D) dithiolene-based MOF, Cu[Ni(2,3-pyrazinedithiolate)2] (1), is evaluated as an electrocatalyst for the HER. In pH 1.3 aqueous electrolyte solution, 1 exhibits a catalytic onset at -0.43 V vs the reversible hydrogen electrode (RHE), an overpotential (η10 mA/cm2) of 0.53 V to reach a current density of 10 mA/cm2, and a Tafel slope of 69.0 mV/dec. Interestingly, under controlled potential electrolysis, 1 undergoes an activation process that results in a more active catalyst with a 200 mV reduction in the catalytic onset and η10 mA/cm2. It is proposed that the activation process is a result of the cleavage of Cu-N bonds in the presence of protons and electrons. This hypothesis is supported by various experimental studies and density functional theory calculations.

7.
Nat Chem ; 13(6): 594-598, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33859391

RESUMO

Materials that combine magnetic order with other desirable physical attributes could find transformative applications in spintronics, quantum sensing, low-density magnets and gas separations. Among potential multifunctional magnetic materials, metal-organic frameworks, in particular, bear structures that offer intrinsic porosity, vast chemical and structural programmability, and the tunability of electronic properties. Nevertheless, magnetic order within metal-organic frameworks has generally been limited to low temperatures, owing largely to challenges in creating a strong magnetic exchange. Here we employ the phenomenon of itinerant ferromagnetism to realize magnetic ordering at TC = 225 K in a mixed-valence chromium(II/III) triazolate compound, which represents the highest ferromagnetic ordering temperature yet observed in a metal-organic framework. The itinerant ferromagnetism proceeds through a double-exchange mechanism, which results in a barrierless charge transport below the Curie temperature and a large negative magnetoresistance of 23% at 5 K. These observations suggest applications for double-exchange-based coordination solids in the emergent fields of magnetoelectrics and spintronics.

8.
Chem Sci ; 11(26): 6690-6700, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32953030

RESUMO

The incorporation of second-row transition metals into metal-organic frameworks could greatly improve the performance of these materials across a wide variety of applications due to the enhanced covalency, redox activity, and spin-orbit coupling of late-row metals relative to their first-row analogues. Thus far, however, the synthesis of such materials has been limited to a small number of metals and structural motifs. Here, we report the syntheses of the two-dimensional metal-organic framework materials (H2NMe2)2Nb2(Cl2dhbq)3 and Mo2(Cl2dhbq)3 (H2Cl2dhbq = 3,6-dichloro-2,5-dihydroxybenzoquinone), which feature mononuclear niobium or molybdenum metal nodes and are formed through reactions driven by metal-to-ligand electron transfer. Characterization of these materials via X-ray absorption spectroscopy suggests a local trigonal prismatic coordination geometry for both niobium and molybdenum, consistent with their increased covalency relative to related first-row transition metal compounds. A combination of vibrational spectroscopy, magnetic susceptibility, and electronic conductivity measurements reveal that these two frameworks possess distinct electronic structures. In particular, while the niobium compound displays evidence for redox-trapping and strong magnetic interactions, the molybdenum phase is valence-delocalized with evidence of large polaron formation. Weak interlayer interactions in the neutral molybdenum phase enable solvent-assisted exfoliation to yield few-layer hexagonal nanosheets. Together, these results represent the first syntheses of metal-organic frameworks containing mononuclear niobium and molybdenum nodes, establishing a route to frameworks incorporating a more diverse range of second- and third-row transition metals with increased covalency and the potential for improved charge transport and stronger magnetic coupling.

9.
J Am Chem Soc ; 142(34): 14627-14637, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786654

RESUMO

Developing O2-selective adsorbents that can produce high-purity oxygen from air remains a significant challenge. Here, we show that chemically reduced metal-organic framework materials of the type AxFe2(bdp)3 (A = Na+, K+; bdp2- = 1,4-benzenedipyrazolate; 0 < x ≤ 2), which feature coordinatively saturated iron centers, are capable of strong and selective adsorption of O2 over N2 at ambient (25 °C) or even elevated (200 °C) temperature. A combination of gas adsorption analysis, single-crystal X-ray diffraction, magnetic susceptibility measurements, and a range of spectroscopic methods, including 23Na solid-state NMR, Mössbauer, and X-ray photoelectron spectroscopies, are employed as probes of O2 uptake. Significantly, the results support a selective adsorption mechanism involving outer-sphere electron transfer from the framework to form superoxide species, which are subsequently stabilized by intercalated alkali metal cations that reside in the one-dimensional triangular pores of the structure. We further demonstrate O2 uptake behavior similar to that of AxFe2(bdp)3 in an expanded-pore framework analogue and thereby gain additional insight into the O2 adsorption mechanism. The chemical reduction of a robust metal-organic framework to render it capable of binding O2 through such an outer-sphere electron transfer mechanism represents a promising and underexplored strategy for the design of next-generation O2 adsorbents.


Assuntos
Ferro/química , Estruturas Metalorgânicas/química , Oxigênio/química , Pirazóis/química , Temperatura , Adsorção , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
10.
J Am Chem Soc ; 142(10): 4705-4713, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32017552

RESUMO

Metal-organic frameworks with amidic linkers often exhibit exceptional physical properties, but, owing to their strong metal-nitrogen bonds, are exceedingly challenging to isolate through direct synthesis. Here, we report a route to access metal-diamidobenzoquinone frameworks from their dihydroxobenzoquinone counterparts via postsynthetic linker exchange. The parent compounds (Me2NH2)2[M2L3] (M = Zn, Mn; H2L = 2,5-dichloro-3,6-dihydroxo-1,4-benzoquinone) undergo linker exchange upon exposure to a solution of monodeprotonated 2,5-diamino-3,6-dibromo-1,4-benzoquinone or 2,5-diamino-3,6-dichloro-1,4-benzoquinone, proceeding through single-crystal-to-single-crystal reactions. The presence of both types of linker in the resulting frameworks is confirmed by a combination of NMR, Raman, and energy-dispersive X-ray (EDX) spectroscopies. Moreover, the extent of linker exchange in the Zn frameworks is quantified using 13C NMR spectroscopy, and spatially resolved EDX spectroscopy reveals the two types of linker to be homogeneously distributed within a crystal. Finally, we propose a tentative mechanism of linker exchange based on pKa measurements, considerations of framework solubility, and powder X-ray diffraction analysis. This work provides the first method to exchange organic linkers with different donor atoms in metal-organic frameworks and in doing so demonstrates exchange between linkers with donor atoms differing in acidity by a remarkable 11 units of pKa. Together, these results offer a potentially general synthetic strategy toward new materials with exotic metal-linker coordination modes.

11.
Adv Mater ; 32(10): e1905771, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31985110

RESUMO

Lithium-ion batteries have remained a state-of-the-art electrochemical energy storage technology for decades now, but their energy densities are limited by electrode materials and conventional liquid electrolytes can pose significant safety concerns. Lithium metal batteries featuring Li metal anodes, solid polymer electrolytes, and high-voltage cathodes represent promising candidates for next-generation devices exhibiting improved power and safety, but such solid polymer electrolytes generally do not exhibit the required excellent electrochemical properties and thermal stability in tandem. Here, an interpenetrating network polymer with weakly coordinating anion nodes that functions as a high-performing single-ion conducting electrolyte in the presence of minimal plasticizer, with a wide electrochemical stability window, a high room-temperature conductivity of 1.5 × 10-4 S cm-1 , and exceptional selectivity for Li-ion conduction (tLi+ = 0.95) is reported. Importantly, this material is also flame retardant and highly stable in contact with lithium metal. Significantly, a lithium metal battery prototype containing this quasi-solid electrolyte is shown to outperform a conventional battery featuring a polymer electrolyte.

12.
J Am Chem Soc ; 142(5): 2653-2664, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31940192

RESUMO

Two iron-semiquinoid framework materials, (H2NMe2)2Fe2(Cl2 dhbq)3 (1) and (H2NMe2)4Fe3(Cl2 dhbq)3(SO4)2 (Cl2 dhbqn- = deprotonated 2,5-dichloro-3,6-dihydroxybenzoquinone) (2-SO4), are shown to possess electrochemical capacities of up to 195 mAh/g. Employing a variety of spectroscopic methods, we demonstrate that these exceptional capacities arise from a combination of metal- and ligand-centered redox processes, a result supported by electronic structure calculations. Importantly, similar capacities are not observed in isostructural frameworks containing redox-inactive metal ions, highlighting the importance of energy alignment between metal and ligand orbitals to achieve high capacities at high potentials in these materials. Prototype lithium-ion devices constructed using 1 as a cathode demonstrate reasonable capacity retention over 50 cycles, with a peak specific energy of 533 Wh/kg, representing the highest value yet reported for a metal-organic framework. In contrast, the capacities of devices using 2-SO4 as a cathode rapidly diminish over several cycles due to the low electronic conductivity of the material, illustrating the nonviability of insulating frameworks as cathode materials. Finally, 1 is further demonstrated to access similar capacities as a sodium-ion or potassium-ion cathode. Together, these results demonstrate the feasibility and versatility of metal-organic frameworks as energy storage materials for a wide range of battery chemistries.

13.
Chem Sci ; 11(34): 9173-9180, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34123166

RESUMO

Precisely locating extra-framework cations in anionic metal-organic framework compounds remains a long-standing, yet crucial, challenge for elucidating structure-performance relationships in functional materials. Single-crystal X-ray diffraction is one of the most powerful approaches for this task, but single crystals of frameworks often degrade when subjected to post-synthetic metalation or reduction. Here, we demonstrate the growth of sizable single crystals of the robust metal-organic framework Fe2(bdp)3 (bdp2- = benzene-1,4-dipyrazolate) and employ single-crystal-to-single-crystal chemical reductions to access the solvated framework materials A2Fe2(bdp)3·yTHF (A = Li+, Na+, K+). X-ray diffraction analysis of the sodium and potassium congeners reveals that the cations are located near the center of the triangular framework channels and are stabilized by weak cation-π interactions with the framework ligands. Freeze-drying with benzene enables isolation of activated single crystals of Na0.5Fe2(bdp)3 and Li2Fe2(bdp)3 and the first structural characterization of activated metal-organic frameworks wherein extra-framework alkali metal cations are also structurally located. Comparison of the solvated and activated sodium-containing structures reveals that the cation positions differ in the two materials, likely due to cation migration that occurs upon solvent removal to maximize stabilizing cation-π interactions. Hydrogen adsorption data indicate that these cation-framework interactions are sufficient to diminish the effective cationic charge, leading to little or no enhancement in gas uptake relative to Fe2(bdp)3. In contrast, Mg0.85Fe2(bdp)3 exhibits enhanced H2 affinity and capacity over the non-reduced parent material. This observation shows that increasing the charge density of the pore-residing cation serves to compensate for charge dampening effects resulting from cation-framework interactions and thereby promotes stronger cation-H2 interactions.

14.
J Am Chem Soc ; 140(8): 3040-3051, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29400059

RESUMO

The isostructural, two-dimensional metal-organic frameworks (H2NMe2)2M2(Cl2dhbq)3 (M = Ti, V; Cl2dhbqn- = deprotonated 2,5-dichloro-3,6-dihydroxybenzoquinone) and (H2NMe2)1.5Cr2(dhbq)3 (dhbqn- = deprotonated 2,5-dihydroxybenzoquinone) are synthesized and investigated by spectroscopic, magnetic, and electrochemical methods. The three frameworks exhibit substantial differences in their electronic structures, and the bulk electronic conductivities of these phases correlate with the extent of delocalization observed via UV-vis-NIR and IR spectroscopies. Notably, substantial metal-ligand covalency in the vanadium phase results in the quenching of ligand-based spins, the observation of simultaneous metal- and ligand-based redox processes, and a high electronic conductivity of 0.45 S/cm. A molecular orbital analysis of these materials and a previously reported iron congener suggests that the differences in conductivity can be explained by correlating the metal-ligand energy alignment with the energy of intervalence charge-transfer transitions, which should determine the barrier to charge hopping in the mixed-valence frameworks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...