Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Microbiol ; 28(7): 554-565, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32544442

RESUMO

Viral defective interfering particles (DIPs) were intensely studied several decades ago but research waned leaving open many critical questions. New technologies and other advances led to a resurgence in DIP studies for negative-strand RNA viruses. While DIPs have long been recognized, their exact contribution to the outcome of acute or persistent viral infections has remained elusive. Recent studies have identified defective viral genomes (DVGs) in human infections, including respiratory syncytial virus and influenza, and growing evidence indicates that DVGs influence disease severity and may contribute to viral persistence. Further, several studies have advanced our understanding of key viral and host factors that regulate DIP formation and activity. Here we review these discoveries and highlight key questions moving forward.


Assuntos
Vírus Defeituosos/genética , Orthomyxoviridae/genética , Vírus Sinciciais Respiratórios/genética , Interferência Viral/genética , Replicação Viral/genética , Deleção de Genes , Genoma Viral/genética
2.
PLoS Pathog ; 15(11): e1008100, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710650

RESUMO

Viral late domains are used by many viruses to recruit the cellular endosomal sorting complex required for transport (ESCRT) to mediate membrane scission during viral budding. Unlike the P(S/T)AP and YPX(1-3)L late domains, which interact directly with the ESCRT proteins Tsg101 and ALIX, the molecular linkage connecting the PPXY late domain to ESCRT proteins is unclear. The mammarenavirus lymphocytic choriomeningitis virus (LCMV) matrix protein, Z, contains only one late domain, PPXY. We previously found that this domain in LCMV Z, as well as the ESCRT pathway, are required for the release of defective interfering (DI) particles but not infectious virus. To better understand the molecular mechanism of ESCRT recruitment by the PPXY late domain, affinity purification-mass spectrometry was used to identify host proteins that interact with the Z proteins of the Old World mammarenaviruses LCMV and Lassa virus. Several Nedd4 family E3 ubiquitin ligases interact with these matrix proteins and in the case of LCMV Z, the interaction was PPXY-dependent. We demonstrated that these ligases directly ubiquitinate LCMV Z and mapped the specific lysine residues modified. A recombinant LCMV containing a Z that cannot be ubiquitinated maintained its ability to produce both infectious virus and DI particles, suggesting that direct ubiquitination of LCMV Z alone is insufficient for recruiting ESCRT proteins to mediate virus release. However, Nedd4 ligases appear to be important for DI particle release suggesting that ubiquitination of targets other than the Z protein itself is required for efficient viral ESCRT recruitment.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitinação , Montagem de Vírus , Replicação Viral , Humanos , Coriomeningite Linfocítica/metabolismo , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas
3.
Pathogens ; 7(4)2018 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-30544850

RESUMO

Lassa mammarenavirus (LASV) is an enveloped RNA virus that can cause Lassa fever, an acute hemorrhagic fever syndrome associated with significant morbidity and high rates of fatality in endemic regions of western Africa. The arenavirus matrix protein Z has several functions during the virus life cycle, including coordinating viral assembly, driving the release of new virus particles, regulating viral polymerase activity, and antagonizing the host antiviral response. There is limited knowledge regarding how the various functions of Z are regulated. To investigate possible means of regulation, mass spectrometry was used to identify potential sites of phosphorylation in the LASV Z protein. This analysis revealed that two serines (S18, S98) and one tyrosine (Y97) are phosphorylated in the flexible N- and C-terminal regions of the protein. Notably, two of these sites, Y97 and S98, are located in (Y97) or directly adjacent to (S98) the PPXY late domain, an important motif for virus release. Studies with non-phosphorylatable and phosphomimetic Z proteins revealed that these sites are important regulators of the release of LASV particles and that host-driven, reversible phosphorylation may play an important role in the regulation of LASV Z protein function.

4.
J Virol ; 92(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29643234

RESUMO

Lymphocytic choriomeningitis mammarenavirus (LCMV) is an enveloped, negative-strand RNA virus that causes serious disease in humans but establishes an asymptomatic, lifelong infection in reservoir rodents. Different models have been proposed to describe how arenaviruses regulate the replication and transcription of their bisegmented, single-stranded RNA genomes, particularly during persistent infection. However, these models were based largely on viral RNA profiling data derived from entire populations of cells. To better understand LCMV replication and transcription at the single-cell level, we established a high-throughput, single-molecule fluorescence in situ hybridization (smFISH) image acquisition and analysis pipeline and examined viral RNA species at discrete time points from virus entry through the late stages of persistent infection in vitro We observed the transcription of viral nucleoprotein and polymerase mRNAs from the incoming S and L segment genomic RNAs, respectively, within 1 h of infection, whereas the transcription of glycoprotein mRNA from the S segment antigenome required ∼4 to 6 h. This confirms the temporal separation of viral gene expression expected due to the ambisense coding strategy of arenaviruses and also suggests that antigenomic RNA contained in virions is not transcriptionally active upon entry. Viral replication and transcription peaked at 36 h postinfection, followed by a progressive loss of viral RNAs over the next several days. During persistence, the majority of cells showed repeating cyclical waves of viral transcription and replication followed by the clearance of viral RNA. Thus, our data support a model of LCMV persistence whereby infected cells can spontaneously clear infection and become reinfected by viral reservoir cells that remain in the population.IMPORTANCE Arenaviruses are human pathogens that can establish asymptomatic, lifelong infections in their rodent reservoirs. Several models have been proposed to explain how arenavirus spread is restricted within host rodents, including the periodic accumulation and loss of replication-competent, but transcriptionally incompetent, viral genomes. A limitation of previous studies was the inability to enumerate viral RNA species at the single-cell level. We developed a high-throughput, smFISH assay and used it to quantitate lymphocytic choriomeningitis mammarenavirus (LCMV) replicative and transcriptional RNA species in individual cells at distinct time points following infection. Our findings support a model whereby productively infected cells can clear infection, including viral RNAs and antigen, and later be reinfected. This information improves our understanding of the timing and possible regulation of LCMV genome replication and transcription during infection. Importantly, the smFISH assay and data analysis pipeline developed here is easily adaptable to other RNA viruses.


Assuntos
Hibridização in Situ Fluorescente/métodos , Vírus da Coriomeningite Linfocítica/genética , RNA Viral/genética , Células A549 , Linhagem Celular , Genoma Viral/genética , Humanos , Sondas RNA/genética , Coloração e Rotulagem/métodos , Replicação Viral/genética
5.
J Gen Virol ; 99(2): 187-193, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29393022

RESUMO

We report the development of recombinant New World (Junín; JUNV) and Old World (lymphocytic choriomeningitis virus; LCMV) mammarenaviruses that encode an HA-tagged matrix protein (Z). These viruses permit the robust affinity purification of Z from infected cells or virions, as well as the detection of Z by immunofluorescent microscopy. Importantly, the HA-tagged viruses grow with wild-type kinetics in a multi-cycle growth assay. Using these viruses, we report a novel description of JUNV Z localization in infected cells, as well as the first description of colocalization between LCMV Z and the GTPase Rab5c. This latter result, when combined with our previous findings that LCMV genome and glycoprotein also colocalize with Rab5c, suggest that LCMV may target Rab5c-positive membranes for preassembly of virus particles prior to budding. The recombinant viruses reported here will provide the field with new tools to better study Z protein functionality and identify key Z protein interactions with host machinery.


Assuntos
Arenavirus/fisiologia , Proteínas de Transporte/metabolismo , Epitopos/imunologia , GTP Fosfo-Hidrolases/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Coriomeningite Linfocítica/fisiologia , Células A549 , Arenavirus/imunologia , Proteínas de Transporte/genética , Endossomos/metabolismo , Endossomos/virologia , GTP Fosfo-Hidrolases/genética , Genes Reporter , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virologia , Peptídeos e Proteínas de Sinalização Intracelular , Vírus da Coriomeningite Linfocítica/imunologia , Microscopia de Fluorescência , Montagem de Vírus
6.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29187543

RESUMO

Arenaviruses are negative-strand, enveloped RNA viruses that cause significant human disease. In particular, Junín mammarenavirus (JUNV) is the etiologic agent of Argentine hemorrhagic fever. At present, little is known about the cellular proteins that the arenavirus matrix protein (Z) hijacks to accomplish its various functions, including driving the process of virus release. Furthermore, there is little knowledge regarding host proteins incorporated into arenavirus particles and their importance for virion function. To address these deficiencies, we used mass spectrometry to identify human proteins that (i) interact with the JUNV matrix protein inside cells or within virus-like particles (VLPs) and/or (ii) are incorporated into bona fide JUNV strain Candid#1 particles. Bioinformatics analyses revealed that multiple classes of human proteins were overrepresented in the data sets, including ribosomal proteins, Ras superfamily proteins, and endosomal sorting complex required for transport (ESCRT) proteins. Several of these proteins were required for the propagation of JUNV (ADP ribosylation factor 1 [ARF1], ATPase, H+ transporting, lysosomal 38-kDa, V0 subunit d1 [ATP6V0D1], and peroxiredoxin 3 [PRDX3]), lymphocytic choriomeningitis mammarenavirus (LCMV) (Rab5c), or both viruses (ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide [ATP5B] and IMP dehydrogenase 2 [IMPDH2]). Furthermore, we show that the release of infectious JUNV particles, but not LCMV particles, requires a functional ESCRT pathway and that ATP5B and IMPDH2 are required for JUNV budding. In summary, we have provided a large-scale map of host machinery that associates with JUNV and identified key human proteins required for its propagation. This data set provides a resource for the field to guide antiviral target discovery and to better understand the biology of the arenavirus matrix protein and the importance of host proteins for virion function.IMPORTANCE Arenaviruses are deadly human pathogens for which there are no U.S. Food and Drug Administration-approved vaccines and only limited treatment options. Little is known about the host proteins that are incorporated into arenavirus particles or that associate with its multifunctional matrix protein. Using Junín mammarenavirus (JUNV), the causative agent of Argentine hemorrhagic fever, as a model organism, we mapped the human proteins that are incorporated into JUNV particles or that associate with the JUNV matrix protein. Functional analysis revealed host machinery that is required for JUNV propagation, including the cellular ESCRT pathway. This study improves our understanding of critical arenavirus-host interactions and provides a data set that will guide future studies to better understand arenavirus pathogenesis and identify novel host proteins that can be therapeutically targeted.


Assuntos
Febre Hemorrágica Americana/virologia , Interações Hospedeiro-Patógeno , Vírus Junin/patogenicidade , Proteoma/metabolismo , Proteômica/métodos , Replicação Viral , Células HEK293 , Febre Hemorrágica Americana/metabolismo , Humanos , Vírus Junin/isolamento & purificação , Proteoma/análise , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus
7.
J Gen Virol ; 98(10): 2454-2460, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28949905

RESUMO

We report a fluorescence in situ hybridization (FISH) assay that allows the visualization of lymphocytic choriomeningitis mammarenavirus (LCMV) genomic RNAs in individual cells. We show that viral S segment genomic and antigenomic RNA, along with viral nucleoprotein, colocalize in subcellular structures we presume to be viral replication factories. These viral RNA structures are highly dynamic during acute infection, with the many small foci seen early coalescing into larger perinuclear foci later in infection. These late-forming perinuclear viral RNA aggregates are located near the cellular microtubule organizing centre and colocalize with the early endosomal marker Rab5c and the viral glycoprotein in a proportion of infected cells. We propose that the virus is using the surface of a cellular membrane-bound organelle as a site for the pre-assembly of viral components, including genomic RNA and viral glycoprotein, prior to their transport to the plasma membrane, where new particles will bud.

8.
J Virol ; 91(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539447

RESUMO

Arenaviruses are enveloped negative-strand RNA viruses that cause significant human disease. These viruses encode only four proteins to accomplish the viral life cycle, so each arenavirus protein likely plays unappreciated accessory roles during infection. Here we used immunoprecipitation and mass spectrometry to identify human proteins that interact with the nucleoproteins (NPs) of the Old World arenavirus lymphocytic choriomeningitis virus (LCMV) and the New World arenavirus Junín virus (JUNV) strain Candid #1. Bioinformatic analysis of the identified protein partners of NP revealed that host translation appears to be a key biological process engaged during infection. In particular, NP associates with the double-stranded RNA (dsRNA)-activated protein kinase (PKR), a well-characterized antiviral protein that inhibits cap-dependent protein translation initiation via phosphorylation of eIF2α. JUNV infection leads to increased expression of PKR as well as its redistribution to viral replication and transcription factories. Further, phosphorylation of PKR, which is a prerequisite for its ability to phosphorylate eIF2α, is readily induced by JUNV. However, JUNV prevents this pool of activated PKR from phosphorylating eIF2α, even following exposure to the synthetic dsRNA poly(I·C), a potent PKR agonist. This blockade of PKR function is highly specific, as LCMV is unable to similarly inhibit eIF2α phosphorylation. JUNV's ability to antagonize the antiviral activity of PKR appears to be complete, as silencing of PKR expression has no impact on viral propagation. In summary, we provide a detailed map of the host machinery engaged by arenavirus NPs and identify an antiviral pathway that is subverted by JUNV.IMPORTANCE Arenaviruses are important human pathogens for which FDA-approved vaccines do not exist and effective antiviral therapeutics are needed. Design of antiviral treatment options and elucidation of the mechanistic basis of disease pathogenesis will depend on an increased basic understanding of these viruses and, in particular, their interactions with the host cell machinery. Identifying host proteins critical for the viral life cycle and/or pathogenesis represents a useful strategy to uncover new drug targets. This study reveals, for the first time, the extensive human protein interactome of arenavirus nucleoproteins and uncovers a potent antiviral host protein that is neutralized during Junín virus infection. In so doing, it shows further insight into the interplay between the virus and the host innate immune response and provides an important data set for the field.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Vírus Junin/patogenicidade , Vírus da Coriomeningite Linfocítica/patogenicidade , Proteínas do Nucleocapsídeo/metabolismo , eIF-2 Quinase/antagonistas & inibidores , Linhagem Celular , Humanos , Imunoprecipitação , Espectrometria de Massas , Mapeamento de Interação de Proteínas
9.
J Gen Virol ; 97(9): 2084-2089, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27421645

RESUMO

We report that the lymphocytic choriomeningitis virus (LCMV) matrix protein, which drives viral budding, is phosphorylated at serine 41 (S41). A recombinant (r)LCMV bearing a phosphomimetic mutation (S41D) was impaired in infectious and defective interfering (DI) particle release, while a non-phosphorylatable mutant (S41A) was not. The S41D mutant was disproportionately impaired in its ability to release DI particles relative to infectious particles. Thus, DI particle production by LCMV may be dynamically regulated via phosphorylation of S41.


Assuntos
Motivos de Aminoácidos , Vírus Defeituosos/metabolismo , Vírus da Coriomeningite Linfocítica/fisiologia , Fosfosserina/análise , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Substituição de Aminoácidos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas da Matriz Viral/genética
10.
PLoS Pathog ; 12(3): e1005501, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27010636

RESUMO

Arenaviruses cause severe diseases in humans but establish asymptomatic, lifelong infections in rodent reservoirs. Persistently-infected rodents harbor high levels of defective interfering (DI) particles, which are thought to be important for establishing persistence and mitigating virus-induced cytopathic effect. Little is known about what drives the production of DI particles. We show that neither the PPXY late domain encoded within the lymphocytic choriomeningitis virus (LCMV) matrix protein nor a functional endosomal sorting complex transport (ESCRT) pathway is absolutely required for the generation of standard infectious virus particles. In contrast, DI particle release critically requires the PPXY late domain and is ESCRT-dependent. Additionally, the terminal tyrosine in the PPXY motif is reversibly phosphorylated and our findings indicate that this posttranslational modification may regulate DI particle formation. Thus we have uncovered a new role for the PPXY late domain and a possible mechanism for its regulation.


Assuntos
Vírus Defeituosos/metabolismo , Vírus da Coriomeningite Linfocítica/fisiologia , Vírion/metabolismo , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Humanos , Fosforilação , Estrutura Terciária de Proteína , Liberação de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...