Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 176(5): 1054-1067.e12, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30773316

RESUMO

Vault RNAs (vtRNA) are small non-coding RNAs transcribed by RNA polymerase III found in many eukaryotes. Although they have been linked to drug resistance, apoptosis, and viral replication, their molecular functions remain unclear. Here, we show that vault RNAs directly bind the autophagy receptor sequestosome-1/p62 in human and murine cells. Overexpression of human vtRNA1-1 inhibits, while its antisense LNA-mediated knockdown enhances p62-dependent autophagy. Starvation of cells reduces the steady-state and p62-bound levels of vault RNA1-1 and induces autophagy. Mechanistically, p62 mutants that fail to bind vtRNAs display increased p62 homo-oligomerization and augmented interaction with autophagic effectors. Thus, vtRNA1-1 directly regulates selective autophagy by binding p62 and interference with oligomerization, a critical step of p62 function. Our data uncover a striking example of the potential of RNA to control protein functions directly, as previously recognized for protein-protein interactions and post-translational modifications.


Assuntos
Autofagia/genética , Partículas de Ribonucleoproteínas em Forma de Abóbada/genética , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Células HeLa , Humanos , Camundongos , Células RAW 264.7 , RNA/metabolismo , RNA não Traduzido/metabolismo , RNA não Traduzido/fisiologia , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo
2.
Cell ; 147(3): 525-38, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22036562

RESUMO

The extent of lung regeneration following catastrophic damage and the potential role of adult stem cells in such a process remains obscure. Sublethal infection of mice with an H1N1 influenza virus related to that of the 1918 pandemic triggers massive airway damage followed by apparent regeneration. We show here that p63-expressing stem cells in the bronchiolar epithelium undergo rapid proliferation after infection and radiate to interbronchiolar regions of alveolar ablation. Once there, these cells assemble into discrete, Krt5+ pods and initiate expression of markers typical of alveoli. Gene expression profiles of these pods suggest that they are intermediates in the reconstitution of the alveolar-capillary network eradicated by viral infection. The dynamics of this p63-expressing stem cell in lung regeneration mirrors our parallel finding that defined pedigrees of human distal airway stem cells assemble alveoli-like structures in vitro and suggests new therapeutic avenues to acute and chronic airway disease.


Assuntos
Brônquios/citologia , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/patologia , Pulmão/fisiologia , Alvéolos Pulmonares/citologia , Síndrome do Desconforto Respiratório/patologia , Células-Tronco/citologia , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Pulmão/citologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/virologia , Ratos , Fatores de Transcrição/genética , Cicatrização
4.
Cell ; 144(4): 566-76, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21335238

RESUMO

TAp63α, a homolog of the p53 tumor suppressor, is a quality control factor in the female germline. Remarkably, already undamaged oocytes express high levels of the protein, suggesting that TAp63α's activity is under tight control of an inhibitory mechanism. Biochemical studies have proposed that inhibition requires the C-terminal transactivation inhibitory domain. However, the structural mechanism of TAp63α inhibition remains unknown. Here, we show that TAp63α is kept in an inactive dimeric state. We reveal that relief of inhibition leads to tetramer formation with ∼20-fold higher DNA affinity. In vivo, phosphorylation-triggered tetramerization of TAp63α is not reversible by dephosphorylation. Furthermore, we show that a helix in the oligomerization domain of p63 is crucial for tetramer stabilization and competes with the transactivation domain for the same binding site. Our results demonstrate how TAp63α is inhibited by complex domain-domain interactions that provide the basis for regulating quality control in oocytes.


Assuntos
Oócitos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Transativadores/química , Transativadores/metabolismo , Animais , DNA/metabolismo , Dimerização , Feminino , Raios gama , Camundongos , Modelos Moleculares , Fosforilação , Multimerização Proteica , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...