Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Revasc Med ; 54: 33-38, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37087308

RESUMO

AIMS: Standard manual analysis of IVUS to study the impact of anti-atherosclerotic therapies on the coronary vessel wall is done by a core laboratory (CL), the ground truth (GT). Automatic segmentation of IVUS with a machine learning (ML) algorithm has the potential to replace manual readings with an unbiased and reproducible method. The aim is to determine if results from a CL can be replicated with ML methods. METHODS: This is a post-hoc, comparative analysis of the IBIS-4 (Integrated Biomarkers and Imaging Study-4) study (NCT00962416). The GT baseline and 13-month follow-up measurements of lumen and vessel area and percent atheroma volume (PAV) after statin induction were repeated by the ML algorithm. RESULTS: The primary endpoint was change in PAV. PAV as measured by GT was 43.95 % at baseline and 43.02 % at follow-up with a change of -0.90 % (p = 0.007) while the ML algorithm measured 43.69 % and 42.41 % for baseline and follow-up, respectively, with a change of -1.28 % (p < 0.001). Along the most diseased 10 mm segments, GT-PAV was 52.31 % at baseline and 49.42 % at follow-up, with a change of -2.94 % (p < 0.001). The same segments measured by the ML algorithm resulted in PAV of 51.55 % at baseline and 47.81 % at follow-up with a change of -3.74 % (p < 0.001). CONCLUSIONS: PAV, the most used endpoint in clinical trials, analyzed by the CL is closely replicated by the ML algorithm. ML automatic segmentation of lumen, vessel and plaque effectively reproduces GT and may be used in future clinical trials as the standard.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Inibidores de Hidroximetilglutaril-CoA Redutases , Placa Aterosclerótica , Humanos , Aterosclerose/diagnóstico por imagem , Aterosclerose/tratamento farmacológico , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/tratamento farmacológico , Vasos Coronários/diagnóstico por imagem , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Ultrassonografia de Intervenção/métodos
2.
Med Image Anal ; 75: 102262, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34670148

RESUMO

Segmentation of lumen and vessel contours in intravascular ultrasound (IVUS) pullbacks is an arduous and time-consuming task, which demands adequately trained human resources. In the present study, we propose a machine learning approach to automatically extract lumen and vessel boundaries from IVUS datasets. The proposed approach relies on the concatenation of a deep neural network to deliver a preliminary segmentation, followed by a Gaussian process (GP) regressor to construct the final lumen and vessel contours. A multi-frame convolutional neural network (MFCNN) exploits adjacency information present in longitudinally neighboring IVUS frames, while the GP regression method filters high-dimensional noise, delivering a consistent representation of the contours. Overall, 160 IVUS pullbacks (63 patients) from the IBIS-4 study (Integrated Biomarkers and Imaging Study-4, Trial NCT00962416), were used in the present work. The MFCNN algorithm was trained with 100 IVUS pullbacks (8427 manually segmented frames), was validated with 30 IVUS pullbacks (2583 manually segmented frames) and was blindly tested with 30 IVUS pullbacks (2425 manually segmented frames). Image and contour metrics were used to characterize model performance by comparing ground truth (GT) and machine learning (ML) contours. Median values (interquartile range, IQR) of the Jaccard index for lumen and vessel were 0.913, [0.882,0.935] and 0.940, [0.917,0.957], respectively. Median values (IQR) of the Hausdorff distance for lumen and vessel were 0.196mm, [0.146,0.275]mm and 0.163mm, [0.122,0.234]mm, respectively. Also, the mean value of lumen area predictions, and limits of agreement were -0.19mm2, [1.1,-1.5]mm2, while the mean value and limits of agreement of plaque burden were 0.0022, [0.082,-0.078]. The results obtained with the model developed in this work allow us to conclude that the proposed machine learning approach delivers accurate segmentations in terms of image metrics, contour metrics and clinically relevant variables, enabling its use in clinical routine by mitigating the costs involved in the manual management of IVUS datasets.


Assuntos
Vasos Coronários , Ultrassonografia de Intervenção , Algoritmos , Vasos Coronários/diagnóstico por imagem , Humanos , Ultrassonografia
3.
Int J Cardiovasc Imaging ; 38(7): 1431-1439, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38819542

RESUMO

A machine learning (ML) algorithm for automatic segmentation of intravascular ultrasound was previously validated. It has the potential to improve efficiency, accuracy and precision of coronary vessel segmentation compared to manual segmentation by interventional cardiology experts. The aim of this study is to compare the performance of human readers to the machine and against the readings from a Core Laboratory. This is a post-hoc, cross-sectional analysis of the IBIS-4 study. Forty frames were randomly selected and analyzed by 10 readers of varying expertise two separate times, 1 week apart. Their measurements of lumen, vessel, plaque areas, and plaque burden were performed in an offline software. Among humans, the intra-observer variability was not statistically significant. For the total 80 frames, inter-observer variability between human readers, the ML algorithm and Core Laboratory for lumen area, vessel area, plaque area and plaque burden were not statistically different. For lumen area, however, relative differences between the human readers and the Core Lab ranged from 0.26 to 12.61%. For vessel area, they ranged from 1.25 to 9.54%. Efficiency between the ML algorithm and the readers differed notably. Humans spent 47 min on average to complete the analyses, while the ML algorithm took on average less than 1 min. The overall lumen, vessel and plaque means analyzed by humans and the proposed ML algorithm are similar to those of the Core Lab. Machines, however, are more time efficient. It is warranted to consider use of the ML algorithm in clinical practice.

4.
Int J Numer Method Biomed Eng ; 37(5): e3442, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33522112

RESUMO

The characterization of vascular geometry is a fundamental step towards the correct interpretation of coronary artery disease. In this work, we report a comprehensive comparison of the geometry featured by coronary vessels as obtained from coronary computed tomography angiography (CCTA) and the combination of intravascular ultrasound (IVUS) with bi-plane angiography (AX) modalities. We analyzed 34 vessels from 28 patients with coronary disease, which were deferred to CCTA and IVUS procedures. We discuss agreement and discrepancies between several geometric indexes extracted from vascular geometries. Such an analysis allows us to understand to which extent the coronary vascular geometry can be reliable in the interpretation of geometric risk factors, and as a surrogate to characterize coronary artery disease.


Assuntos
Doença da Artéria Coronariana , Vasos Coronários , Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Humanos , Ultrassonografia de Intervenção
5.
Eur Heart J Digit Health ; 1(1): 75-82, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36713961

RESUMO

Aims: Assessment of minimum lumen areas in intravascular ultrasound (IVUS) pullbacks is time-consuming and demands adequately trained personnel. In this work, we introduce a novel and fully automated pipeline to segment the lumen boundary in IVUS datasets. Methods and results: First, an automated gating is applied to select end-diastolic frames and bypass saw-tooth artefacts. Second, within a machine learning (ML) environment, we automatically segment the lumen boundary using a multi-frame (MF) convolutional neural network (MFCNN). Finally, we use the theory of Gaussian processes (GPs) to regress the final lumen boundary. The dataset consisted of 85 IVUS pullbacks (52 patients). The dataset was partitioned at the pullback-level using 73 pullbacks for training (20 586 frames), 6 pullbacks for validation (1692 frames), and 6 for testing (1692 frames). The degree of overlapping, between the ground truth and ML contours, median (interquartile range, IQR) systematically increased from 0.896 (0.874-0.933) for MF1 to 0.925 (0.911-0.948) for MF11. The median (IQR) of the distance error was also reduced from 3.83 (2.94-4.98)% for MF1 to 3.02 (2.25-3.95)% for MF11-GP. The corresponding median (IQR) in the lumen area error remained between 5.49 (2.50-10.50)% for MF1 and 5.12 (2.15-9.00)% for MF11-GP. The dispersion in the relative distance and area errors consistently decreased as we increased the number of frames, and also when the GP regressor was coupled to the MFCNN output. Conclusion: These results demonstrate that the proposed ML approach is suitable to effectively segment the lumen boundary in IVUS scans, reducing the burden of costly and time-consuming manual delineation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...