Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
bioRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37808643

RESUMO

Several PET studies have explored the relationship between ß-amyloid load and tau uptake at the early stages of Alzheimer's disease (AD) progression. Most of these studies have focused on the linear relationship between ß-amyloid and tau at the local level and their synergistic effect on different AD biomarkers. We hypothesize that patterns of spatial association between ß-amyloid and tau might be uncovered using alternative association metrics that account for linear as well as more complex, possible nonlinear dependencies. In the present study, we propose a new Canonical Distance Correlation Analysis (CDCA) to generate distinctive spatial patterns of the cross-correlation structure between tau, as measured by [18F]flortaucipir PET, and ß-amyloid, as measured by [18F]florbetapir PET, from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. We found that the CDCA-based ß-amyloid scores were not only maximally distance-correlated to tau in cognitively normal (CN) controls and mild cognitive impairment (MCI), but also differentiated between low and high levels of ß-amyloid uptake. The most distinctive spatial association pattern was characterized by a spread of ß-amyloid covering large areas of the cortex and localized tau in the entorhinal cortex. More importantly, this spatial dependency varies according to cognition, which cannot be explained by the uptake differences in ß-amyloid or tau between CN and MCI subjects. Hence, the CDCA-based scores might be more accurate than the amyloid or tau SUVR for the enrollment in clinical trials of those individuals on the path of cognitive deterioration.

2.
Front Neuroinform ; 15: 665560, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381348

RESUMO

In recent years, the replicability of neuroimaging findings has become an important concern to the research community. Neuroimaging pipelines consist of myriad numerical procedures, which can have a cumulative effect on the accuracy of findings. To address this problem, we propose a method for simulating artificial lesions in the brain in order to estimate the sensitivity and specificity of lesion detection, using different automated corticometry pipelines. We have applied this method to different versions of two widely used neuroimaging pipelines (CIVET and FreeSurfer), in terms of coefficients of variation; sensitivity and specificity of detecting lesions in 4 different regions of interest in the cortex, while introducing variations to the lesion size, the blurring kernel used prior to statistical analyses, and different thickness metrics (in CIVET). These variations are tested in a between-subject design (in two random groups, with and without lesions, using T1-weigted MRIs of 152 individuals from the International Consortium of Brain Mapping (ICBM) dataset) and in a within-subject pre-/post-lesion design [using 21 T1-Weighted MRIs of a single adult individual, scanned in the Infant Brain Imaging Study (IBIS)]. The simulation method is sensitive to partial volume effect and lesion size. Comparisons between pipelines illustrate the ability of this method to uncover differences in sensitivity and specificity of lesion detection. We propose that this method be adopted in the workflow of software development and release.

3.
J Alzheimers Dis ; 73(2): 543-557, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31796668

RESUMO

BACKGROUND: Several positron emission tomography (PET) studies have explored the relationship between amyloid-ß (Aß), glucose metabolism, and the APOEɛ4 genotype. It has been reported that APOEɛ4, and not aggregated Aß, contributes to glucose hypometabolism in pre-clinical stages of Alzheimer's disease (AD) pathology. OBJECTIVE: We hypothesize that typical measurements of Aß taken either from composite regions-of-interest with relatively high burden actually cover significant patterns of the relationship with glucose metabolism. In contrast, spatially weighted measures of Aß are more related to glucose metabolism in cognitively normal (CN) aging and mild cognitive impairment (MCI). METHODS: We have generated a score of amyloid burden based on a joint singular value decomposition (SVD) of the cross-correlation structure between glucose metabolism, as measured by [18F]2-fluoro-2-deoxyglucose (FDG) PET, and Aß, as measured by [18F]florbetapir PET, from the Alzheimer's Disease Neuroimaging Initiative study. This SVD-based score reveals cortical regions where a reduced glucose metabolism is maximally correlated with distributed patterns of Aß. RESULTS: From an older population of CN and MCI subjects, we found that the SVD-based Aß score was significantly correlated with glucose metabolism in several cortical regions. Additionally, the corresponding Aß network has hubs that contribute to distributed glucose hypometabolism, which, in turn, are not necessarily foci of Aß deposition. CONCLUSIONS: Our approach uncovered hidden patterns of the glucose metabolism-Aß relationship. We showed that the SVD-based Aß score produces a stronger relationship with decreasing glucose metabolism than either APOEɛ4 genotype or global measures of Aß burden.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/metabolismo , Glucose/metabolismo , Idoso , Idoso de 80 Anos ou mais , Apolipoproteína E4/genética , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Feminino , Fluordesoxiglucose F18 , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons
4.
J Nucl Med ; 60(1): 100-106, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29777003

RESUMO

SUV ratios (SUVRs) are commonly used to quantify tracer uptake in amyloid-ß PET. Here, we explore the impact of target and reference region-of-interest (ROI) selection on SUVR effect sizes using interventional data from the ongoing phase 1b PRIME study (NCT01677572) of aducanumab (BIIB037) in patients with prodromal or mild Alzheimer disease. Methods: The florbetapir PET SUVR was calculated at baseline (screening) and at weeks 26 and 54 for patients randomized to receive placebo and each of 4 aducanumab doses (1, 3, 6, and 10 mg/kg) using the whole cerebellum, cerebellar gray matter, cerebellar white matter, pons, and subcortical white matter as reference regions. In addition to the prespecified composite cortex target ROI, individual cerebral cortical ROIs were assessed as targets. Results: Of the reference regions used, subcortical white matter, cerebellar white matter, and the pons, alone or in combination, generated the largest effect sizes. The use of the anterior cingulate cortex as a target ROI resulted in larger effect sizes than the use of the composite cortex. SUVR calculations were not affected by correction for brain volume changes over time. Conclusion: Dose- and time-dependent reductions in the amyloid PET SUVR were consistently observed with aducanumab only in cortical regions prone to amyloid plaque deposition, regardless of the reference region used. These data support the hypothesis that florbetapir SUVR responses associated with aducanumab treatment are a result of specific dose- and time-dependent reductions in the amyloid burden in patients with Alzheimer disease.


Assuntos
Amiloide/metabolismo , Anticorpos Monoclonais Humanizados/metabolismo , Tomografia por Emissão de Pósitrons/normas , Adulto , Transporte Biológico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Padrões de Referência
5.
Med Image Anal ; 39: 133-144, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28501699

RESUMO

Quantitative analyses of brain structures from Magnetic Resonance (MR) image data are often performed using automatic segmentation algorithms. Many of these algorithms rely on templates and atlases in a common coordinate space. Most freely available brain atlases are generated from relatively young individuals and not always derived from well-defined cohort studies. In this paper, we introduce a publicly available multi-spectral template with corresponding tissue probability atlases and regional atlases, optimised to use in studies of ageing cohorts (mean age 75 ± 5 years). Furthermore, we provide validation data from a regional segmentation pipeline to assure the integrity of the dataset.


Assuntos
Envelhecimento , Algoritmos , Anatomia Artística , Atlas como Assunto , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Idoso , Feminino , Humanos , Masculino
6.
Hum Brain Mapp ; 38(4): 2276-2325, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28145075

RESUMO

A decade of research and development in resting-state functional MRI (RSfMRI) has opened new translational and clinical research frontiers. This review aims to bridge between technical and clinical researchers who seek reliable neuroimaging biomarkers for studying drug interactions with the brain. About 85 pharma-RSfMRI studies using BOLD signal (75% of all) or arterial spin labeling (ASL) were surveyed to investigate the acute effects of psychoactive drugs. Experimental designs and objectives include drug fingerprinting dose-response evaluation, biomarker validation and calibration, and translational studies. Common biomarkers in these studies include functional connectivity, graph metrics, cerebral blood flow and the amplitude and spectrum of BOLD fluctuations. Overall, RSfMRI-derived biomarkers seem to be sensitive to spatiotemporal dynamics of drug interactions with the brain. However, drugs cause both central and peripheral effects, thus exacerbate difficulties related to biological confounds, structured noise from motion and physiological confounds, as well as modeling and inference testing. Currently, these issues are not well explored, and heterogeneities in experimental design, data acquisition and preprocessing make comparative or meta-analysis of existing reports impossible. A unifying collaborative framework for data-sharing and data-mining is thus necessary for investigating the commonalities and differences in biomarker sensitivity and specificity, and establishing guidelines. Multimodal datasets including sham-placebo or active control sessions and repeated measurements of various psychometric, physiological, metabolic and neuroimaging phenotypes are essential for pharmacokinetic/pharmacodynamic modeling and interpretation of the findings. We provide a list of basic minimum and advanced options that can be considered in design and analyses of future pharma-RSfMRI studies. Hum Brain Mapp 38:2276-2325, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Pesquisa Biomédica , Química Encefálica , Encéfalo , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Mapeamento Encefálico , Circulação Cerebrovascular/efeitos dos fármacos , Humanos , Processamento de Imagem Assistida por Computador , Descanso , Marcadores de Spin , Pesquisa Translacional Biomédica
7.
Hum Brain Mapp ; 38(1): 151-164, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27557999

RESUMO

There is growing evidence that sub-structures of the brain scale allometrically to total brain size, that is, in a non-proportional and non-linear way. Here, scaling of different volumes of interest (VOI) to intra-cranial volume (ICV) was examined. It was assessed whether scaling was allometric or isometric and whether scaling coefficients significantly differed from each other. We also tested to what extent allometric scaling of VOI was introduced by the automated segmentation technique. Furthermore, reproducibility of allometric scaling was studied different age groups and study populations. Study samples included samples of cognitively healthy adults from the community-based Age Gene/Environment Susceptibility-Reykjavik Study (AGES-Reykjavik Study) (N = 3,883), the Coronary Artery Risk Development in Young Adults Study (CARDIA) (N =709), and the Alzheimer's Disease Neuroimaging Initiative (ADNI) (N = 180). Data encompassed participants with different age, ethnicity, risk factor profile, and ICV and VOI obtained with different automated MRI segmentation techniques. Our analysis showed that (1) allometric scaling is a trait of all parts of the brain, (2) scaling of neo-cortical white matter, neo-cortical gray matter, and deep gray matter structures including the cerebellum are significantly different from each other, and (3) allometric scaling of brain structures cannot solely be explained by age-associated atrophy, sex, ethnicity, or a systematic bias from study-specific segmentation algorithm, but appears to be a true feature of brain geometry. Hum Brain Mapp 38:151-164, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Envelhecimento , Algoritmos , Mapeamento Encefálico , Encéfalo/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/epidemiologia , Encéfalo/diagnóstico por imagem , Planejamento em Saúde Comunitária , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Países Baixos/epidemiologia , Reprodutibilidade dos Testes , Fatores Sexuais
8.
Front Neuroinform ; 10: 35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27563289

RESUMO

It is often useful that an imaging data format can afford rich metadata, be flexible, scale to very large file sizes, support multi-modal data, and have strong inbuilt mechanisms for data provenance. Beginning in 1992, MINC was developed as a system for flexible, self-documenting representation of neuroscientific imaging data with arbitrary orientation and dimensionality. The MINC system incorporates three broad components: a file format specification, a programming library, and a growing set of tools. In the early 2000's the MINC developers created MINC 2.0, which added support for 64-bit file sizes, internal compression, and a number of other modern features. Because of its extensible design, it has been easy to incorporate details of provenance in the header metadata, including an explicit processing history, unique identifiers, and vendor-specific scanner settings. This makes MINC ideal for use in large scale imaging studies and databases. It also makes it easy to adapt to new scanning sequences and modalities.

9.
J Cereb Blood Flow Metab ; 36(12): 2058-2071, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27301477

RESUMO

Glucose hypometabolism in the pre-clinical stage of Alzheimer's disease (AD) has been primarily associated with the APOE ɛ4 genotype, rather than fibrillar ß-amyloid. In contrast, aberrant patterns of metabolic connectivity are more strongly related to ß-amyloid burden than APOE ɛ4 status. A major limitation of previous studies has been the dichotomous classification of subjects as amyloid-positive or amyloid-negative. Dichotomous treatment of a continuous variable, such as ß-amyloid, potentially obscures the true relationship with metabolism and reduces the power to detect significant changes in connectivity. In the present work, we assessed alterations of glucose metabolism and metabolic connectivity as continuous function of ß-amyloid burden using positron emission tomography scans from the Alzheimer's Disease Neuroimaging Initiative study. Modeling ß-amyloid as a continuous variable resulted in better model fits and improved power compared to the dichotomous model. Using this continuous model, we found that both APOE ɛ4 genotype and ß-amyloid burden are strongly associated with glucose hypometabolism at early stages of Alzheimer's disease. We also determined that the cumulative effects of ß-amyloid deposition result in a particular pattern of altered metabolic connectivity, which is characterized by global, synchronized hypometabolism at early stages of the disease process, followed by regionally heterogeneous, progressive hypometabolism.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Transtornos do Metabolismo de Glucose/metabolismo , Doença de Alzheimer/metabolismo , Animais , Apolipoproteína E4/genética , Humanos , Modelos Teóricos , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos
10.
Stroke ; 46(11): 3048-57, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26451028

RESUMO

BACKGROUND AND PURPOSE: White matter lesion (WML) progression on magnetic resonance imaging is related to cognitive decline and stroke, but its determinants besides baseline WML burden are largely unknown. Here, we estimated heritability of WML progression, and sought common genetic variants associated with WML progression in elderly participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. METHODS: Heritability of WML progression was calculated in the Framingham Heart Study. The genome-wide association study included 7773 elderly participants from 10 cohorts. To assess the relative contribution of genetic factors to progression of WML, we compared in 7 cohorts risk models including demographics, vascular risk factors plus single-nucleotide polymorphisms that have been shown to be associated cross-sectionally with WML in the current and previous association studies. RESULTS: A total of 1085 subjects showed WML progression. The heritability estimate for WML progression was low at 6.5%, and no single-nucleotide polymorphisms achieved genome-wide significance (P<5×10(-8)). Four loci were suggestive (P<1×10(-5)) of an association with WML progression: 10q24.32 (rs10883817, P=1.46×10(-6)); 12q13.13 (rs4761974, P=8.71×10(-7)); 20p12.1 (rs6135309, P=3.69×10(-6)); and 4p15.31 (rs7664442, P=2.26×10(-6)). Variants that have been previously related to WML explained only 0.8% to 11.7% more of the variance in WML progression than age, vascular risk factors, and baseline WML burden. CONCLUSIONS: Common genetic factors contribute little to the progression of age-related WML in middle-aged and older adults. Future research on determinants of WML progression should focus more on environmental, lifestyle, or host-related biological factors.


Assuntos
Progressão da Doença , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/genética , Adulto , Idoso , Estudos de Coortes , Feminino , Predisposição Genética para Doença/epidemiologia , Humanos , Leucoencefalopatias/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Substância Branca/patologia
11.
J Nucl Med ; 56(9): 1351-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26135108

RESUMO

UNLABELLED: Classification of subjects on the basis of amyloid PET scans is increasingly being used in research studies and clinical practice. Although qualitative, visual assessment is currently the gold standard approach, automated classification techniques are inherently more reproducible and efficient. The objective of this work was to develop a statistical approach for the automated classification of subjects with different levels of cognitive impairment into a group with low amyloid levels (AßL) and a group with high amyloid levels (AßH) through the use of amyloid PET data from the Alzheimer Disease Neuroimaging Initiative study. METHODS: In our framework, an iterative, voxelwise, regularized discriminant analysis is combined with a receiver operating characteristic approach that optimizes the selection of a region of interest (ROI) and a cutoff value for the automated classification of subjects into the AßL and AßH groups. The robustness, spatial stability, and generalization of the resulting target ROIs were evaluated by use of the standardized uptake value ratio for (18)F-florbetapir PET images from subjects who served as healthy controls, subjects who had mild cognitive impairment, and subjects who had Alzheimer disease and were participating in the Alzheimer Disease Neuroimaging Initiative study. RESULTS: We determined that several iterations of the discriminant analysis improved the classification of subjects into the AßL and AßH groups. We found that an ROI consisting of the posterior cingulate cortex/precuneus and the medial frontal cortex yielded optimal group separation and showed good stability across different reference regions and cognitive cohorts. A key step in this process was the automated determination of the cutoff value for group separation, which was dependent on the reference region used for the standardized uptake value ratio calculation and which was shown to have a relatively narrow range across subject groups. CONCLUSION: We developed a data-driven approach for the determination of an optimal target ROI and an associated cutoff value for the separation of subjects into the AßL and AßH groups. Future work should include the application of this process to other datasets to facilitate the determination of the translatability of the optimal ROI obtained in this study to other populations. Ideally, the accuracy of our target ROI and cutoff value could be further validated with PET-autopsy data from large-scale studies. It is anticipated that this approach will be extremely useful for the enrichment of study populations in clinical trials involving putative disease-modifying therapeutic agents for Alzheimer disease.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina/farmacocinética , Etilenoglicóis/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Idoso , Algoritmos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Feminino , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Distribuição Tecidual
12.
J Cereb Blood Flow Metab ; 34(12): 1936-43, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25294129

RESUMO

Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high ß-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Conectoma , Metaboloma/fisiologia , Modelos Neurológicos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Amiloide/metabolismo , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Bases de Dados Factuais , Feminino , Fluordesoxiglucose F18 , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos
13.
J Cereb Blood Flow Metab ; 34(7): 1169-79, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24736891

RESUMO

Positron emission tomography (PET) studies using [18F]2-fluoro-2-deoxyglucose (FDG) have identified a well-defined pattern of glucose hypometabolism in Alzheimer's disease (AD). The assessment of the metabolic relationship among brain regions has the potential to provide unique information regarding the disease process. Previous studies of metabolic correlation patterns have demonstrated alterations in AD subjects relative to age-matched, healthy control subjects. The objective of this study was to examine the associations between ß-amyloid, apolipoprotein E ɛ4 (APOE ɛ4) genotype, and metabolic correlations patterns in subjects diagnosed with mild cognitive impairment (MCI). Mild cognitive impairment subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study were categorized into ß-amyloid-low and ß-amyloid-high groups, based on quantitative analysis of [18F]florbetapir PET scans, and APOE ɛ4 non-carriers and carriers based on genotyping. We generated voxel-wise metabolic correlation strength maps across the entire cerebral cortex for each group, and, subsequently, performed a seed-based analysis. We found that the APOE ɛ4 genotype was closely related to regional glucose hypometabolism, while elevated, fibrillar ß-amyloid burden was associated with specific derangements of the metabolic correlation patterns.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Idoso , Compostos de Anilina , Disfunção Cognitiva/genética , Etilenoglicóis , Feminino , Fluordesoxiglucose F18 , Genótipo , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
14.
Neurobiol Aging ; 35(1): 72-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23992618

RESUMO

Atrophy of the medial temporal lobe (MTL) and basal ganglia (BG) are characteristic of various neurodegenerative diseases in older people. In search of potentially modifiable factors that lead to atrophy in these structures, we studied the association of vascular risk factors with atrophy of the MTL and BG in 368 nondemented men and women (born, 1907-1935) who participated in the Age, Gene/Environment, Susceptibility-Reykjavik Study. A fully automated segmentation pipeline estimated volumes of the MTL and BG from whole-brain magnetic resonance imaging performed at baseline and 2.4 years later. Linear regression models showed higher systolic and diastolic blood pressures and the presence of Apo E ε4 were independently associated with increased atrophy of the MTL but no association of vascular risk factors with atrophy of the BG. The different susceptibility of MTL and BG atrophy to the vascular risk factors suggests perfusion of the BG is relatively preserved when vascular risk factors are present.


Assuntos
Gânglios da Base/patologia , Suscetibilidade a Doenças , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Lobo Temporal/patologia , Idoso , Idoso de 80 Anos ou mais , Apolipoproteína E4 , Atrofia , Pressão Sanguínea , Feminino , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Doenças Neurodegenerativas/fisiopatologia , Fatores de Risco
15.
Neurobiol Dis ; 54: 59-67, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23454197

RESUMO

Magnetic resonance imaging (MRI) studies have identified aberrant cortical structure in Alzheimer's disease (AD). The association between MRI-derived cortical morphometry measures and ß-amyloid, however, remains poorly understood. In this study, we explored the potential relationship between early alterations in cortical thickness and later stage ß-amyloid deposition, using a novel approach, in a transgenic AD mouse model. We acquired longitudinal anatomical MRI scans from mutant amyloid precursor protein (APP) transgenic mice and age-matched wild-type mice at 1 and 3.5months-of-age, and employed fully-automated image processing methods to derive objective, quantitative measures of cortical thickness on a region-of-interest basis. We also generated 3D quantitative immunohistochemistry (qIHC) volumes of deposited ß-amyloid burden from 18month-old transgenic mice using an automated, production-level process. These studies revealed thinner cortex in most regions in the 1month-old transgenic mice relative to age-matched wild-types, with the exception of the frontal, perirhinal/entorhinal, posterior cingulate, and retrosplenial cortical regions. Between 1 and 3.5months-of-age, the transgenic mice demonstrated stable or increasing cortical thickness, while the wild-type mice showed cortical thinning. Based on data from co-registered 3D MRI and qIHC volumes, we identified an association between abnormal, early, regional cortical thickness change over 2.5months and later ß-amyloid deposition. These observations suggest that the spatio-temporal pattern of early (pre-plaque) alterations in cerebral cortical structure is indicative of regional predisposition to later ß-amyloid pathology in a transgenic AD mouse model.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/patologia , Processamento de Imagem Assistida por Computador/métodos , Doença de Alzheimer/metabolismo , Animais , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos
16.
Nat Genet ; 44(5): 539-44, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22504418

RESUMO

During aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our genome-wide association study (GWAS) in 8,175 community-dwelling elderly persons did not reveal any associations at genome-wide significance (P < 5 × 10(-8)) for brain volume. In contrast, intracranial volume was significantly associated with two loci: rs4273712 (P = 3.4 × 10(-11)), a known height-associated locus on chromosome 6q22, and rs9915547 (P = 1.5 × 10(-12)), localized to the inversion on chromosome 17q21. We replicated the associations of these loci with intracranial volume in a separate sample of 1,752 elderly persons (P = 1.1 × 10(-3) for 6q22 and 1.2 × 10(-3) for 17q21). Furthermore, we also found suggestive associations of the 17q21 locus with head circumference in 10,768 children (mean age of 14.5 months). Our data identify two loci associated with head size, with the inversion at 17q21 also likely to be involved in attaining maximal brain size.


Assuntos
Encéfalo/fisiopatologia , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 6/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Idoso , Idoso de 80 Anos ou mais , Feminino , Loci Gênicos , Marcadores Genéticos , Cabeça/fisiopatologia , Humanos , Lactente , Masculino
17.
Nat Genet ; 44(5): 545-51, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22504421

RESUMO

Aging is associated with reductions in hippocampal volume that are accelerated by Alzheimer's disease and vascular risk factors. Our genome-wide association study (GWAS) of dementia-free persons (n = 9,232) identified 46 SNPs at four loci with P values of <4.0 × 10(-7). In two additional samples (n = 2,318), associations were replicated at 12q14 within MSRB3-WIF1 (discovery and replication; rs17178006; P = 5.3 × 10(-11)) and at 12q24 near HRK-FBXW8 (rs7294919; P = 2.9 × 10(-11)). Remaining associations included one SNP at 2q24 within DPP4 (rs6741949; P = 2.9 × 10(-7)) and nine SNPs at 9p33 within ASTN2 (rs7852872; P = 1.0 × 10(-7)); along with the chromosome 12 associations, these loci were also associated with hippocampal volume (P < 0.05) in a third younger, more heterogeneous sample (n = 7,794). The SNP in ASTN2 also showed suggestive association with decline in cognition in a largely independent sample (n = 1,563). These associations implicate genes related to apoptosis (HRK), development (WIF1), oxidative stress (MSR3B), ubiquitination (FBXW8) and neuronal migration (ASTN2), as well as enzymes targeted by new diabetes medications (DPP4), indicating new genetic influences on hippocampal size and possibly the risk of cognitive decline and dementia.


Assuntos
Cromossomos Humanos Par 12/genética , Transtornos Cognitivos/genética , Demência/genética , Hipocampo/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética , Doença de Alzheimer/genética , Loci Gênicos , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Metanálise como Assunto
18.
Front Neuroinform ; 6: 7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22493575

RESUMO

The analysis of neuroimaging databases typically involves a large number of inter-connected steps called a pipeline. The pipeline system for Octave and Matlab (PSOM) is a flexible framework for the implementation of pipelines in the form of Octave or Matlab scripts. PSOM does not introduce new language constructs to specify the steps and structure of the workflow. All steps of analysis are instead described by a regular Matlab data structure, documenting their associated command and options, as well as their input, output, and cleaned-up files. The PSOM execution engine provides a number of automated services: (1) it executes jobs in parallel on a local computing facility as long as the dependencies between jobs allow for it and sufficient resources are available; (2) it generates a comprehensive record of the pipeline stages and the history of execution, which is detailed enough to fully reproduce the analysis; (3) if an analysis is started multiple times, it executes only the parts of the pipeline that need to be reprocessed. PSOM is distributed under an open-source MIT license and can be used without restriction for academic or commercial projects. The package has no external dependencies besides Matlab or Octave, is straightforward to install and supports of variety of operating systems (Linux, Windows, Mac). We ran several benchmark experiments on a public database including 200 subjects, using a pipeline for the preprocessing of functional magnetic resonance images (fMRI). The benchmark results showed that PSOM is a powerful solution for the analysis of large databases using local or distributed computing resources.

19.
Neuroimage ; 59(4): 3862-3870, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22119006

RESUMO

Imaging studies have reported conflicting findings on how brain structure differs with age and sex. This may be explained by discrepancies and limitations in study population and study design. We report a study on brain tissue volumes in one of the largest cohorts of individuals studied to date of subjects with high mean age (mean ± standard deviation (SD) 76 ± 6 years). These analyses are based on magnetic resonance imaging (MRI) scans acquired at baseline on 4303 non-demented elderly, and 367 who had a second MRI, on average 2.5 ± 0.2 years later. Tissue segmentation was performed with an automatic image analysis pipeline. Total brain parenchymal (TBP) volume decreased with increasing age while there was an increase in white matter hyperintensities (WMH) in both sexes. A reduction in both normal white matter (NWM)- and gray matter (GM) volume contributed to the brain shrinkage. After adjusting for intra-cranial volume, women had larger brain volumes compared to men (3.32%, p < 0.001) for TBP volume in the cross-sectional analysis. The longitudinal analysis showed a significant age-sex interaction in TBP volume with a greater rate of annual change in men (-0.70%, 95%CI: -0.78% to -0.63%) than women (-0.55%, 95%CI: -0.61% to -0.49%). The annual change in the cross-sectional data was approximately 40% less than the annual change in the longitudinal data and did not show significant age-sex interaction. The findings indicate that the cross-sectional data underestimate the rate of change in tissue volumes with age as the longitudinal data show greater rate of change in tissue volumes with age for all tissues.


Assuntos
Encéfalo/patologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Atrofia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão
20.
Arch Gen Psychiatry ; 68(11): 1122-34, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22065528

RESUMO

CONTEXT: Volumetric studies have reported relatively decreased cortical thickness and gray matter volumes in adults with attention-deficit/hyperactivity disorder (ADHD) whose childhood status was retrospectively recalled. We present, to our knowledge, the first prospective study combining cortical thickness and voxel-based morphometry in adults diagnosed as having ADHD in childhood. OBJECTIVES: To test whether adults with combined-type childhood ADHD exhibit cortical thinning and decreased gray matter in regions hypothesized to be related to ADHD and to test whether anatomic differences are associated with a current ADHD diagnosis, including persistent vs remitting ADHD. DESIGN: Cross-sectional analysis embedded in a 33-year prospective follow-up at a mean age of 41.2 years. SETTING: Research outpatient center. PARTICIPANTS: We recruited probands with ADHD from a cohort of 207 white boys aged 6 to 12 years. Male comparison participants (n = 178) were free of ADHD in childhood. We obtained magnetic resonance images in 59 probands and 80 comparison participants (28.5% and 44.9% of the original samples, respectively). MAIN OUTCOME MEASURES: Whole-brain voxel-based morphometry and vertexwise cortical thickness analyses. RESULTS: The cortex was significantly thinner in ADHD probands than in comparison participants in the dorsal attentional network and limbic areas (false discovery rate < 0.05, corrected). In addition, gray matter was significantly decreased in probands in the right caudate, right thalamus, and bilateral cerebellar hemispheres. Probands with persistent ADHD (n = 17) did not differ significantly from those with remitting ADHD (n = 26) (false discovery rate < 0.05). At uncorrected P < .05, individuals with remitting ADHD had thicker cortex relative to those with persistent ADHD in the medial occipital cortex, insula, parahippocampus, and prefrontal regions. CONCLUSIONS: Anatomic gray matter reductions are observable in adults with childhood ADHD, regardless of the current diagnosis. The most affected regions underpin top-down control of attention and regulation of emotion and motivation. Exploratory analyses suggest that diagnostic remission may result from compensatory maturation of prefrontal, cerebellar, and thalamic circuitry.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Sintomas Comportamentais/patologia , Córtex Cerebral/patologia , Adulto , Idade de Início , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Criança , Doença Crônica , Estudos Transversais , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Indução de Remissão , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...