Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 11(7): 494-501, 2001 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-11412999

RESUMO

BACKGROUND: Notch signaling regulates multiple differentiation processes and cell fate decisions during both invertebrate and vertebrate development. Numb encodes an intracellular protein that was shown in Drosophila to antagonize Notch signaling at binary cell fate decisions of certain cell lineages. Although overexpression experiments suggested that Numb might also antagonize some Notch activity in vertebrates, the developmental processes in which Numb is involved remained elusive. RESULTS: We generated mice with a homozygous inactivation of Numb. These mice died before embryonic day E11.5, probably because of defects in angiogenic remodeling and placental dysfunction. Mutant embryos had an open anterior neural tube and impaired neuronal differentiation within the developing cranial central nervous system (CNS). In the developing spinal cord, the number of differentiated motoneurons was reduced. Within the peripheral nervous system (PNS), ganglia of cranial sensory neurons were formed. Trunk neural crest cells migrated and differentiated into sympathetic neurons. In contrast, a selective differentiation anomaly was observed in dorsal root ganglia, where neural crest--derived progenitor cells had migrated normally to form ganglionic structures, but failed to differentiate into sensory neurons. CONCLUSIONS: Mouse Numb is involved in multiple developmental processes and required for cell fate tuning in a variety of lineages. In the nervous system, Numb is required for the generation of a large subset of neuronal lineages. The restricted requirement of Numb during neural development in the mouse suggests that in some neuronal lineages, Notch signaling may be regulated independently of Numb.


Assuntos
Sistema Nervoso Central/embriologia , Embrião de Mamíferos/citologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Transdução de Sinais , Animais , Padronização Corporal/genética , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Sistema Nervoso Central/anormalidades , Sistema Nervoso Central/citologia , Embrião de Mamíferos/anormalidades , Desenvolvimento Embrionário e Fetal , Marcação de Genes , Proteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Defeitos do Tubo Neural/genética , Neurônios/citologia , Receptores Notch , Recombinação Genética , Deleção de Sequência , Medula Espinal/anormalidades , Células-Tronco
2.
Development ; 126(23): 5409-20, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10556065

RESUMO

We have isolated the discs overgrown gene of Drosophila and shown that it encodes a homolog of the Casein kinase I(delta)/(epsilon) subfamily and is identical to the double-time gene. However, in contrast to the weak double-time alleles, which appear to affect only the circadian rhythm, discs overgrown alleles, including bona fide null alleles, show strong effects on cell survival and growth control in imaginal discs. Analysis of their phenotypes and molecular lesions suggests that the Discs overgrown protein is a crucial component in the mechanism that links cell survival during proliferation to growth arrest in imaginal discs. This work provides the first analysis in a multicellular organism of Casein kinase I(delta)/(epsilon) functions necessary for survival. Since the amino acid sequences and three-dimensional structures of Casein kinase I(delta)/(epsilon) enzymes are highly conserved, the results suggest that these proteins may also function in controlling cell growth and survival in other organisms.


Assuntos
Padronização Corporal/genética , Caseína Quinase 1 épsilon , Proteínas de Drosophila , Drosophila/embriologia , Drosophila/genética , Mutação , Proteínas Quinases/genética , Sequência de Aminoácidos , Animais , Apoptose/genética , Caseína Quinases , Divisão Celular/genética , Sobrevivência Celular/genética , Mapeamento Cromossômico , Células Clonais , Homozigoto , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/citologia , Larva/genética , Dados de Sequência Molecular , Mosaicismo , Fenótipo , Homologia de Sequência de Aminoácidos , Asas de Animais/anormalidades , Asas de Animais/embriologia , Asas de Animais/crescimento & desenvolvimento
3.
Mech Dev ; 68(1-2): 139-47, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9431811

RESUMO

We describe the molecular characterization of the paired-type homeobox gene D-Ptx1 of Drosophila, a close homolog of the mouse pituitary homeobox gene Ptx1 and the unc-30 gene of C. elegans, characterized by a lysine residue at position 9 of the third alpha-helix of the homeodomain. D-Ptx1 is expressed at various restricted locations throughout embryogenesis. Initial expression of D-Ptx1 in the posterior-most region of the blastoderm embryo is controlled by fork head activity in response to the activated Ras/Raf signaling pathway. During later stages of embryonic development. D-Ptx1 transcripts and protein accumulate in the posterior portion of the midgut, in the developing Malpighian tubules, in a subset of ventral somatic muscles, and in neural cells. Phenotypic analysis of gain-of-function and lack-of-function mutant embryos show that the D-Ptx1 gene is not involved in morphologically apparent differentiation processes. We conclude that D-Ptx1 is more likely to control physiological cell functions than pattern formation during Drosophila embryogenesis.


Assuntos
Proteínas de Drosophila , Drosophila/embriologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Blastoderma , Padronização Corporal/genética , Embrião não Mamífero , Fatores de Transcrição Forkhead , Proteínas de Homeodomínio/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição Box Pareados , Fenótipo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
Genes Dev ; 9(5): 534-46, 1995 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-7698644

RESUMO

Homozygous loss of the warts (wts) gene of Drosophila, caused by mitotic recombination in somatic cells, leads to the formation of cell clones that are fragmented, rounded, and greatly overgrown compared with normal controls. Therefore, the gene is required for the control of the amount and direction of cell proliferation as well as for normal morphogenesis. The absence of wts function also results in apical hypertrophy of imaginal disc epithelial cells. Secretion of cuticle over and between the domed apical surfaces of these cells leads to a honeycomb-like structure and gives the superficial wart-like phenotype of mitotic clones on the adult. One wts allele allows survival of homozygotes to the late larval stage, and these larvae show extensive imaginal disc overgrowth. Because of the excess growth and abnormalities of differentiation that follow homozygous loss, we consider wts to be a tumor suppressor gene. The wts gene is defined by the breakpoints of overlapping deficiencies in the right telomeric region of chromosome 3, region 100A, and by lethal P-element insertions and excisions. It encodes a protein kinase that is most similar to human myotonic dystrophy kinase, the Neurospora cot-1 protein kinase, two cell-cycle regulated kinases of yeast, and several putative kinases from plants. These proteins define a new subfamily of protein kinases that are closely related to but distinct from the cyclic AMP-dependent kinases. Although myotonic dystrophy is defined by a neuromuscular disorder, it is sometimes associated with multiple pilomatrixomas, which are otherwise rare epithelial tumors, and with other tumors including neurofibromas and parathyroid adenomas. Our results raise the possibility that homozygous loss of the myotonic dystrophy kinase may contribute to the development of these tumors.


Assuntos
Proteínas de Drosophila , Drosophila/enzimologia , Genes de Insetos/genética , Genes Supressores de Tumor/genética , Proteínas Quinases , Proteínas Serina-Treonina Quinases/genética , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência de Bases , Divisão Celular/genética , Tamanho Celular/genética , Células Cultivadas , Mapeamento Cromossômico , Clonagem Molecular , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Genes de Insetos/fisiologia , Genes Supressores de Tumor/fisiologia , Humanos , Dados de Sequência Molecular , Mutagênese , Miotonina Proteína Quinase , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/fisiologia , Análise de Sequência de DNA , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA