Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(27): 8914-8927, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32376688

RESUMO

Cerebral amyloid angiopathy (CAA) is a vascular disorder that primarily involves deposition of the 40-residue-long ß-amyloid peptide (Aß40) in and along small blood vessels of the brain. CAA is often associated with Alzheimer's disease (AD), which is characterized by amyloid plaques in the brain parenchyma enriched in the Aß42 peptide. Several recent studies have suggested a structural origin that underlies the differences between the vascular amyloid deposits in CAA and the parenchymal plaques in AD. We previously have found that amyloid fibrils in vascular amyloid contain antiparallel ß-sheet, whereas previous studies by other researchers have reported parallel ß-sheet in fibrils from parenchymal amyloid. Using X-ray fluorescence microscopy, here we found that copper strongly co-localizes with vascular amyloid in human sporadic CAA and familial Iowa-type CAA brains compared with control brain blood vessels lacking amyloid deposits. We show that binding of Cu(II) ions to antiparallel fibrils can block the conversion of these fibrils to the more stable parallel, in-register conformation and enhances their ability to serve as templates for seeded growth. These results provide an explanation for how thermodynamically less stable antiparallel fibrils may form amyloid in or on cerebral vessels by using Cu(II) as a structural cofactor.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Angiopatia Amiloide Cerebral/metabolismo , Cobre/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/fisiologia , Encéfalo/metabolismo , Angiopatia Amiloide Cerebral/fisiopatologia , Humanos , Espectroscopia de Ressonância Magnética/métodos , Microscopia de Força Atômica/métodos , Conformação Molecular , Fragmentos de Peptídeos/fisiologia , Placa Amiloide/metabolismo , Conformação Proteica em Folha beta
2.
Structure ; 28(9): 1004-1013.e4, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470317

RESUMO

Despite high-resolution crystal structures of both inactive and active G protein-coupled receptors (GPCRs), it is still not known how ligands trigger the large structural change on the intracellular side of the receptor since the conformational changes that occur within the extracellular ligand-binding region upon activation are subtle. Here, we use solid-state NMR and Fourier transform infrared spectroscopy on rhodopsin to show that Trp2656.48 within the CWxP motif on transmembrane helix H6 constrains a proline hinge in the inactive state, suggesting that activation results in unraveling of the H6 backbone within this motif, a local change in dynamics that allows helix H6 to swing outward. Notably, Tyr3017.48 within activation switch 2 appears to mimic the negative allosteric sodium ion found in other family A GPCRs, a finding that is broadly relevant to the mechanism of receptor activation.


Assuntos
Prolina/química , Rodopsina/química , Rodopsina/metabolismo , Células HEK293 , Humanos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Conformação Proteica , Rodopsina/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Triptofano/química , Triptofano/genética , Tirosina/química , Tirosina/metabolismo
3.
Methods Mol Biol ; 1777: 321-330, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29744845

RESUMO

The amyloid-ß (Aß) peptides that form the amyloid fibrils associated with Alzheimer's disease are generated by sequential proteolysis of the amyloid precursor protein by ß- and γ-secretase. The two predominant Aß peptides, Aß40 and Aß42, differ by two amino acids, are soluble as monomers at low concentration (and/or low temperature) and are normally cleared from the brain parenchyma. In order to study the structure and assembly of these peptides, they are often synthesized using solid-phase peptide synthesis and purified. Here, we outline the method we use to prepare monomeric Aß for structural and biochemical studies.


Assuntos
Peptídeos beta-Amiloides/química , Estrutura Molecular , Agregados Proteicos , Amiloide/química , Espectroscopia de Ressonância Magnética , Estabilidade Proteica , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Nat Commun ; 7: 12683, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27585742

RESUMO

The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use solid-state NMR and FTIR spectroscopy to define the orientation and interactions of the retinal chromophore in the active metarhodopsin II intermediate. Here we show that isomerization of the 11-cis retinal chromophore generates strong steric interactions between its ß-ionone ring and transmembrane helices H5 and H6, while deprotonation of its protonated Schiff's base triggers the rearrangement of the hydrogen-bonding network involving residues on H6 and within the second extracellular loop. We integrate these observations with previous structural and functional studies to propose a two-stage mechanism for rhodopsin activation.


Assuntos
Retina/fisiologia , Retinaldeído/química , Rodopsina/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Nat Struct Mol Biol ; 23(8): 738-43, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27376589

RESUMO

Conserved prolines in the transmembrane helices of G-protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilization of the receptor structure. To address the role of conserved prolines in family A GPCRs through solid-state NMR spectroscopy, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily. The free backbone C=O groups on helices H5 and H7 stabilize the inactive rhodopsin structure through hydrogen-bonds to residues on adjacent helices. In response to light-induced isomerization of the retinal chromophore, hydrogen-bonding interactions involving these C=O groups are released, thus facilitating repacking of H5 and H7 onto the transmembrane core of the receptor. These results provide insights into the multiple structural and functional roles of prolines in membrane proteins.


Assuntos
Rodopsina/química , Regulação Alostérica , Animais , Bovinos , Células HEK293 , Humanos , Ligação de Hidrogênio , Cetonas/química , Transdução de Sinal Luminoso , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Rodopsina/fisiologia , Transducina/química
6.
Biochemistry ; 53(50): 7893-903, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25422864

RESUMO

Aß42 peptides associate into soluble oligomers and protofibrils in the process of forming the amyloid fibrils associated with Alzheimer's disease. The oligomers have been reported to be more toxic to neurons than fibrils, and have been targeted by a wide range of small molecule and peptide inhibitors. With single touch atomic force microscopy (AFM), we show that monomeric Aß42 forms two distinct types of oligomers, low molecular weight (MW) oligomers with heights of 1-2 nm and high MW oligomers with heights of 3-5 nm. In both cases, the oligomers are disc-shaped with diameters of ~10-15 nm. The similar diameters suggest that the low MW species stack to form the high MW oligomers. The ability of Aß42 inhibitors to interact with these oligomers is probed using atomic force microscopy and NMR spectroscopy. We show that curcumin and resveratrol bind to the N-terminus (residues 5-20) of Aß42 monomers and cap the height of the oligomers that are formed at 1-2 nm. A second class of inhibitors, which includes sulindac sulfide and indomethacin, exhibit very weak interactions across the Aß42 sequence and do not block the formation of the high MW oligomers. The correlation between N-terminal interactions and capping of the height of the Aß oligomers provides insights into the mechanism of inhibition and the pathway of Aß aggregation.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Curcumina/química , Indometacina/química , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Agregados Proteicos , Sulindaco/análogos & derivados , Anti-Inflamatórios não Esteroides/química , Humanos , Microscopia de Força Atômica , Estrutura Terciária de Proteína , Sulindaco/química
7.
J Am Chem Soc ; 131(42): 15160-9, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19795853

RESUMO

The visual pigment rhodopsin is unique among the G protein-coupled receptors in having an 11-cis retinal chromophore covalently bound to the protein through a protonated Schiff base linkage. The chromophore locks the visual receptor in an inactive conformation through specific steric and electrostatic interactions. This efficient inverse agonist is rapidly converted to an agonist, the unprotonated Schiff base of all-trans retinal, upon light activation. Here, we use magic angle spinning NMR spectroscopy to obtain the (13)C chemical shifts (C5-C20) of the all-trans retinylidene chromophore and the (15)N chemical shift of the Schiff base nitrogen in the active metarhodopsin II intermediate. The retinal chemical shifts are sensitive to the conformation of the chromophore and its molecular interactions within the protein-binding site. Comparison of the retinal chemical shifts in metarhodopsin II with those of retinal model compounds reveals that the Schiff base environment is polar. In particular, the (13)C15 and (15)Nepsilon chemical shifts indicate that the C horizontal lineN bond is highly polarized in a manner that would facilitate Schiff base hydrolysis. We show that a strong perturbation of the retinal (13)C12 chemical shift observed in rhodopsin is reduced in wild-type metarhodopsin II and in the E181Q mutant of rhodopsin. On the basis of the T(1) relaxation time of the retinal (13)C18 methyl group and the conjugated retinal (13)C5 and (13)C8 chemical shifts, we have determined that the conformation of the retinal C6-C7 single bond connecting the beta-ionone ring and the retinylidene chain is 6-s-cis in both the inactive and the active states of rhodopsin. These results are discussed within the general framework of ligand-activated G protein-coupled receptors.


Assuntos
Retinaldeído/química , Rodopsina/química , Sítios de Ligação , Linhagem Celular , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Mutação , Processos Fotoquímicos , Estrutura Terciária de Proteína , Retinaldeído/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
8.
Nat Struct Mol Biol ; 16(2): 168-75, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19182802

RESUMO

The second extracellular loop (EL2) of rhodopsin forms a cap over the binding site of its photoreactive 11-cis retinylidene chromophore. A crucial question has been whether EL2 forms a reversible gate that opens upon activation or acts as a rigid barrier. Distance measurements using solid-state (13)C NMR spectroscopy between the retinal chromophore and the beta4 strand of EL2 show that the loop is displaced from the retinal binding site upon activation, and there is a rearrangement in the hydrogen-bonding networks connecting EL2 with the extracellular ends of transmembrane helices H4, H5 and H6. NMR measurements further reveal that structural changes in EL2 are coupled to the motion of helix H5 and breaking of the ionic lock that regulates activation. These results provide a comprehensive view of how retinal isomerization triggers helix motion and activation in this prototypical G protein-coupled receptor.


Assuntos
Rodopsina/química , Animais , Bovinos , Linhagem Celular , Humanos , Luz , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Retinaldeído/química , Retinaldeído/metabolismo , Rodopsina/metabolismo
9.
J Biol Chem ; 284(15): 10190-201, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19176531

RESUMO

Rhodopsin is a highly specialized G protein-coupled receptor (GPCR) that is activated by the rapid photochemical isomerization of its covalently bound 11-cis-retinal chromophore. Using two-dimensional solid-state NMR spectroscopy, we defined the position of the retinal in the active metarhodopsin II intermediate. Distance constraints were obtained between amino acids in the retinal binding site and specific (13)C-labeled sites located on the beta-ionone ring, polyene chain, and Schiff base end of the retinal. We show that the retinal C20 methyl group rotates toward the second extracellular loop (EL2), which forms a cap on the retinal binding site in the inactive receptor. Despite the trajectory of the methyl group, we observed an increase in the C20-Gly(188) (EL2) distance consistent with an increase in separation between the retinal and EL2 upon activation. NMR distance constraints showed that the beta-ionone ring moves to a position between Met(207) and Phe(208) on transmembrane helix H5. Movement of the ring toward H5 was also reflected in increased separation between the Cepsilon carbons of Lys(296) (H7) and Met(44) (H1) and between Gly(121) (H3) and the retinal C18 methyl group. Helix-helix interactions involving the H3-H5 and H4-H5 interfaces were also found to change in the formation of metarhodopsin II reflecting increased retinal-protein interactions in the region of Glu(122) (H3) and His(211) (H5). We discuss the location of the retinal in metarhodopsin II and its interaction with sequence motifs, which are highly conserved across the pharmaceutically important class A GPCR family, with respect to the mechanism of receptor activation.


Assuntos
Receptores Acoplados a Proteínas G/química , Retina/metabolismo , Rodopsina/química , Segmento Externo da Célula Bastonete/metabolismo , Sítios de Ligação , Linhagem Celular , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Polienos/química , Conformação Proteica , Rodopsina/metabolismo , Bases de Schiff/química
10.
Solid State Nucl Magn Reson ; 26(3-4): 153-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15388179

RESUMO

17O NMR studies of various cation-exchanged LTA and LSX zeolites have shown similarities between the two systems. LSX samples containing divalent cations contain resonances with similar chemical shifts to those previously assigned to 'bare' framework oxygen atoms in Ca-LTA and Sr-LTA. The assignments are consistent with the trends seen in the spectra of monovalent cation-containing LSX and LTA zeolites, which show an increase in the average chemical shift with increasing cationic radius. The spectrum of Li-LSX, like Na-LSX, can be assigned based on the T-O-T bond angles. Gas sorption studies on Li-LSX are used to help identify the framework oxygen atoms that form the beta-cages and demonstrate the sensitivity of the (17)O shifts to gas loading.

11.
J Biomol NMR ; 29(1): 11-20, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15017136

RESUMO

Two dimensional (2D) solid-state (13)C.(13)C dipolar recoupling experiments are performed on a series of model compounds and on the visual pigment rhodopsin to establish the most effective method for long range distance measurements in reconstituted membrane proteins. The effects of uniform labeling, inhomogeneous B(1) fields, relaxation and dipolar truncation on cross peak intensity are investigated through NMR measurements of simple amino acid and peptide model compounds. We first show that dipolar assisted rotational resonance (DARR) is more effective than RFDR in recoupling long-range dipolar interactions in these model systems. We then use DARR to establish (13)C-(13)C correlations in rhodopsin. In rhodopsin containing 4'-(13)C-Tyr and 8,19-(13)C retinal, we observe two distinct tyrosine-to-retinal correlations in the DARR spectrum. The most intense cross peak arises from a correlation between Tyr268 and the retinal 19-(13)CH(3), which are 4.8 A apart in the rhodopsin crystal structure. A second cross peak arises from a correlation between Tyr191 and the retinal 19-(13)CH(3), which are 5.5 A apart in the crystal structure. These data demonstrate that long range (13)C em leader (13)C correlations can be obtained in non-crystalline integral membrane proteins reconstituted into lipid membranes containing less than 150 nmoles of protein. In rhodopsin containing 2-(13)C Gly121 and U-(13)C Trp265, we do not observe a Trp-Gly cross peak in the DARR spectrum despite their close proximity (3.6 A) in the crystal structure. Based on model compounds, the absence of a (13)C em leader (13)C cross peak is due to loss of intensity in the diagonal Trp resonances rather than to dipolar truncation.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Rodopsina/química , Triptofano/química , Tirosina/química , Animais , Carbono/química , Bovinos , Linhagem Celular , Cristalografia por Raios X , Glicina/química , Humanos , Modelos Químicos , Ligação Proteica , Conformação Proteica , Prótons , Retina/metabolismo , Fatores de Tempo
12.
Chem Commun (Camb) ; (23): 2808-9, 2002 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-12478757

RESUMO

We report, for the first time, 17O MQMAS and 17O/23Na double resonance NMR studies on calcium-exchanged zeolite sodium-A; the results show that the isotropic shifts of the framework sites are strongly affected by factors including the hydration level and nature of the charge-balancing cations.

13.
Biochemistry ; 41(30): 9321-32, 2002 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-12135353

RESUMO

The Neu receptor tyrosine kinase is constitutively activated by a single amino acid change in the transmembrane domain of the receptor. The mutation of Val664 to glutamate or glutamine induces receptor dimerization and autophosphorylation of the receptor's intracellular kinase domain. The ability of this single mutation to activate the receptor is sequence-dependent, suggesting that specific helix-helix interactions stabilize the transmembrane dimer. We have determined the local secondary structure and interhelical contacts in the region of position 664 in peptide models of the activated receptor using solid-state rotational resonance and rotational echo double-resonance (REDOR) NMR methods. Intrahelical (13)C rotational resonance distance measurements were made between 1-(13)C-Thr662 and 2-(13)C-Gly665 on peptides corresponding to the wild-type Neu and activated Neu transmembrane sequences containing valine and glutamate at position 664, respectively. We observed similar internuclear distances (4.5 +/- 0.2 A) in both Neu and Neu*, indicating that the region near residue 664 is helical and is not influenced by mutation. Interhelical (15)N...(13)C REDOR measurements between Gln664 side chains on opposing helices were not consistent with hydrogen bonding between the side chain functional groups. However, interhelical rotational resonance measurements between 1-(13)C-Glu664 and 2-(13)C-Gly665 and between 1-(13)C-Gly665 and 2-(13)C-Gly665 demonstrated close contacts (4.3-4.5 A) consistent with the packing of Gly665 in the Neu* dimer interface. These measurements provide structural constraints for modeling the transmembrane dimer and define the rotational orientation of the transmembrane helices in the activated receptor.


Assuntos
Receptor ErbB-2/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Membrana Celular/metabolismo , Dimerização , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas , Dados de Sequência Molecular , Receptor ErbB-2/química , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Biophys J ; 82(5): 2476-86, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11964235

RESUMO

The transmembrane helix of glycophorin A contains a seven-residue motif, LIxxGVxxGVxxT, that mediates protein dimerization. Threonine is the only polar amino acid in this motif with the potential to stabilize the dimer through hydrogen-bonding interactions. Polarized Fourier transform infrared spectroscopy is used to establish a robust protocol for incorporating glycophorin A transmembrane peptides into membrane bilayers. Analysis of the dichroic ratio of the 1655-cm(-1) amide I vibration indicates that peptides reconstituted by detergent dialysis have a transmembrane orientation with a helix crossing angle of <35 degrees. Solid-state nuclear magnetic resonance spectroscopy is used to establish high resolution structural restraints on the conformation and packing of Thr-87 in the dimer interface. Rotational resonance measurement of a 2.9-A distance between the gamma-methyl and backbone carbonyl carbons of Thr-87 is consistent with a gauche- conformation for the chi1 torsion angle. Rotational-echo double-resonance measurements demonstrate close packing (4.0 +/- 0.2 A) of the Thr-87 gamma-methyl group with the backbone nitrogen of Ile-88 across the dimer interface. The short interhelical distance places the beta-hydroxyl of Thr-87 within hydrogen-bonding range of the backbone carbonyl of Val-84 on the opposing helix. These results refine the structure of the glycophorin A dimer in membrane bilayers and highlight the complementary role of small and polar residues in the tight association of transmembrane helices in membrane proteins.


Assuntos
Glicoforinas/química , Treonina , Sequência de Aminoácidos , Dimerização , Humanos , Ligação de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...