Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 116(6): 1957-1968, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37944058

RESUMO

Cacopsylla pyricola (Förster) (Hemiptera: Psyllidae) is the most expensive and challenging insect pest of commercial pear trees in the Pacific Northwest. Integrated pest management (IPM) programs are working toward relying more heavily on natural enemies to reduce insecticide use. Trechnites insidiosus (Crawford) (Hymenoptera: Encyrtidae) is the main parasitoid of C. pyricola, but little is known about its biology in the region. Developing sampling tools is important for the deployment of IPM programs, including monitoring of natural enemies. In this study, we examined 2 conventional monitoring methods: beat trays and yellow sticky cards, in addition to screened sticky cards and 3D-printed cylinder traps. Additionally, we tested an overwintering trap for the collection of parasitized C. pyricola. The trapping methods were tested in orchards in Oregon and Washington. Unscreened cards caught the most T. insidiosus and C. pyricola, followed by screened cards, cylinder traps, and then beat trays. Beat trays sometimes failed to catch any T. insidiosus, even when it was found in abundance via other methods. Screened cards and cylinder traps reduced bycatch and increased ease of identifying T. insidiosus. Specimens from the cylinder traps were also more suitable for use in molecular analysis. The overwintering traps were effective at capturing parasitized C. pyricola, but were highly variable year to year. The ideal trapping method will vary based on research needs (e.g., DNA preservation, reducing bycatch, catching higher numbers), but both screened sticky cards and cylinder traps were viable methods for monitoring T. insidiosus and its host.


Assuntos
Hemípteros , Himenópteros , Pyrus , Animais , Hemípteros/genética , Estações do Ano , Insetos
2.
Insects ; 14(10)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37887799

RESUMO

A critical component of integrated pest management is minimizing disruption of biological control by reducing the use of pesticides with significant non-target effects on natural enemies. Insecticide non-target effects testing for natural enemies has become increasingly common, but research examining the non-target effects of herbicides on natural enemies is scarce, and recommendations regarding herbicide selectivity are non-existent. We used meta-analysis to summarize laboratory bioassays testing non-target effects of herbicides on arthropod natural enemies and identify patterns in taxon susceptibility and active ingredient toxicity. Data were extracted from 78 papers representing 801 total observations. Herbicides increased natural enemy mortality and decreased longevity, reproduction, and predation. Mesostigmatan mites and hemipterans were the most sensitive to herbicides, and spiders, neuropterans, and hymenopterans were the least sensitive. Mortality was higher in juvenile predators versus parasitoids but did not differ between adults; parasitoid juveniles are likely better protected within the host. In terms of acute mortality, metribuzin, glufosinate, and oxyfluorfen were the most harmful herbicides. Only nicosulfuron, rimsulfuron, pendimethalin, phenmedipham, atrazine, and urea did not increase natural enemy mortality. The large effect size of glufosinate is particularly concerning, as it is the most likely replacement herbicide for glyphosate in many crops. Many active ingredients remain under-studied. Our analysis indicates that herbicides have a strong potential to disrupt biological control in cropping systems.

3.
J Econ Entomol ; 115(1): 65-73, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34850025

RESUMO

Spiders are key predators in many agroecosystems, including orchards. Despite the importance of spiders in biological control, pesticide nontarget effects on this group are poorly described. This is especially true for herbicides, which spiders frequently encounter as they move between the ground cover and tree canopy. We sought to determine the nontarget effects of seven herbicides used in orchards on three species of spiders that are commonly found in Washington state (USA) orchards: Pelegrina aeneola (Curtis) (Araneae: Salticidae), Philodromus cespitum (Walckenaer) (Araneae: Philodromidae), and Phanias watonus (Chamberlin & Ivie) (Araneae: Salticidae). Immature spiders were collected from orchards and used in laboratory assays. Single spiders were placed in vials with dried herbicide residues and mortality was evaluated after 1, 2, and 5 d. We also evaluated herbicide impacts on prey consumption rates and on spider movement using motion-tracking software. Only oxyfluorfen caused significant spider mortality. P. cespitum seemed to be less acutely sensitive to oxyfluorfen than the two salticid species. Several herbicide treatments significantly increased locomotion in P. cespitum, whereas rimsulfuron numerically decreased movement of P. aeneola. Sulfonylurea herbicides (rimsulfuron, halosulfuron) decreased prey consumption of P. aeneola. Our work indicates that although spiders may be less acutely sensitive to some pesticides than beneficial insects, they can be affected by sublethal effects of herbicides. Future work should determine if herbicide applications impact spider abundance in the field and reduce biological control services. In general, more work is needed on the impacts of herbicides on natural enemies.


Assuntos
Herbicidas , Praguicidas , Aranhas , Animais , Herbicidas/toxicidade , Washington
4.
J Econ Entomol ; 114(3): 1166-1172, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33885762

RESUMO

The tobacco budworm, Chloridea (Heliothis) virescens (F.), has evolved resistance to numerous insecticides in the field. In tobacco, chlorantraniliprole can be applied as either a preventative systemic soil application at or near transplant, or a foliar application timed to current treatment thresholds. With a novel mode of action chlorantraniliprole provides an option for rotation with other insecticides to reduce the probability of insecticide resistance development. However, specific usage patterns in tobacco have the potential to increase the risk of resistance development to this insecticide. In particular, soil applied treatments may expose C. virescens to sublethal concentrations of the insecticide. We studied chlorantraniliprole susceptibility in nine field populations and one laboratory strain of C. virescens using a diet incorporation bioassay. Mortality was measured at 7, 10, and 14 d after exposure. Our results demonstrated that bioassays should be evaluated at 14 d after exposure to optimize interpretation of the dose-response due to the antifeeding properties of chlorantraniliprole. We observed low variation within field-collected populations. Field populations were as susceptible as the laboratory strain; the resistance ratio at the 14-d evaluation for field-collected populations ranged from 1.01 to 1.05. A discriminating dose of 0.117, 0.080, and 0.070 µg a.i./g diet could be used at 7, 10, and 14 d, respectively. Larval growth varied between field populations. Two field populations continued growing on diet containing chlorantraniliprole and differed in size from the laboratory and other populations. Further evaluation of growth inhibition will be necessary.


Assuntos
Inseticidas , Mariposas , Animais , Resistência a Inseticidas , Inseticidas/farmacologia , Larva , North Carolina , Nicotiana , ortoaminobenzoatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...