Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(23): 9578-9585, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36411037

RESUMO

Epitaxially-fused superlattices of colloidal quantum dots (QD epi-SLs) may exhibit electronic minibands and high-mobility charge transport, but electrical measurements of epi-SLs have been limited to large-area, polycrystalline samples in which superlattice grain boundaries and intragrain defects suppress/obscure miniband effects. Systematic measurements of charge transport in individual, highly-ordered epi-SL grains would facilitate the study of minibands in QD films. Here, we demonstrate the air-free fabrication of microscale field-effect transistors (µ-FETs) with channels consisting of single PbSe QD epi-SL grains (2-7 µm channel dimensions) and analyze charge transport in these single-grain devices. The eight devices studied show p-channel or ambipolar transport with a hole mobility as high as 3.5 cm2 V-1 s-1 at 290 K and 6.5 cm2 V-1 s-1 at 170-220 K, one order of magnitude larger than that of previous QD solids. The mobility peaks at 150-220 K, but device hysteresis at higher temperatures makes the true mobility-temperature curve uncertain and evidence for miniband transport inconclusive.

2.
ACS Appl Mater Interfaces ; 13(27): 32424-32434, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34185509

RESUMO

Heterojunction Si solar cells exhibit notable performance degradation. We modeled this degradation by electronic defects getting generated by thermal activation across energy barriers over time. To analyze the physics of this degradation, we developed the SolDeg platform to simulate the dynamics of electronic defect generation. First, femtosecond molecular dynamics simulations were performed to create a-Si/c-Si stacks, using the machine learning-based Gaussian approximation potential. Second, we created shocked clusters by a cluster blaster method. Third, the shocked clusters were analyzed to identify which of them supported electronic defects. Fourth, the distribution of energy barriers that control the generation of these electronic defects was determined. Fifth, an accelerated Monte Carlo method was developed to simulate the thermally activated time-dependent defect generation across the barriers. Our main conclusions are as follows. (1) The degradation of a-Si/c-Si heterojunction solar cells via defect generation is controlled by a broad distribution of energy barriers. (2) We developed the SolDeg platform to track the microscopic dynamics of defect generation across this wide barrier distribution and determined the time-dependent defect density N(t) from femtoseconds to gigaseconds, over 24 orders of magnitude in time. (3) We have shown that a stretched exponential analytical form can successfully describe the defect generation N(t) over at least 10 orders of magnitude in time. (4) We found that in relative terms, Voc degrades at a rate of 0.2%/year over the first year, slowing with advancing time. (5) We developed the time correspondence curve to calibrate and validate the accelerated testing of solar cells. We found a compellingly simple scaling relationship between accelerated and normal times tnormal ∝ taccelT(accel)/T(normal). (6) We also carried out experimental studies of defect generation in a-Si:H/c-Si stacks. We found a relatively high degradation rate at early times that slowed considerably at longer time scales.

3.
Sci Rep ; 11(1): 7458, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33811237

RESUMO

The efficiency of nanoparticle (NP) solar cells has grown impressively in recent years, exceeding 16%. However, the carrier mobility in NP solar cells, and in other optoelectronic applications remains low, thus critically limiting their performance. Therefore, carrier transport in NP solids needs to be better understood to further improve the overall efficiency of NP solar cell technology. However, it is technically challenging to simulate experimental scale samples, as physical processes from atomic to mesoscopic scales all crucially impact transport. To rise to this challenge, here we report the development of TRIDENS: the Transport in Defected Nanoparticle Solids Simulator, that adds three more hierarchical layers to our previously developed HINTS code for nanoparticle solar cells. In TRIDENS, we first introduced planar defects, such as twin planes and grain boundaries into individual NP SLs superlattices (SLs) that comprised the order of 103 NPs. Then we used HINTS to simulate the transport across tens of thousands of defected NP SLs, and constructed the distribution of the NP SL mobilities with planar defects. Second, the defected NP SLs were assembled into a resistor network with more than 104 NP SLs, thus representing about 107 individual NPs. Finally, the TRIDENS results were analyzed by finite size scaling to explore whether the percolation transition, separating the phase where the low mobility defected NP SLs percolate, from the phase where the high mobility undefected NP SLs percolate drives a low-mobility-to-highmobility transport crossover that can be extrapolated to genuinely macroscopic length scales. For the theoretical description, we adapted the Efros-Shklovskii bimodal mobility distribution percolation model. We demonstrated that the ES bimodal theory's two-variable scaling function is an effective tool to quantitatively characterize this low-mobility-to-high-mobility transport crossover.

4.
Nano Lett ; 20(12): 8569-8575, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33205978

RESUMO

We show that adapting the knowledge developed for the disordered Mott-Hubbard model to nanoparticle (NP) solids can deliver many very helpful new insights. We developed a hierarchical nanoparticle transport simulator (HINTS), which builds from localized states to describe the disorder-localized and Mott-localized phases of NP solids and the transitions out of these localized phases. We also studied the interplay between correlations and disorder in the corresponding multiorbital Hubbard model at and away from integer filling by dynamical mean field theory. This DMFT approach is complementary to HINTS, as it builds from the metallic phase of the NP solid. The mobility scenarios produced by the two methods are strikingly similar and account for the mobilities measured in NP solids. We conclude this work by constructing the comprehensive phase diagram of PbSe NP solids on the disorder-filling plane.

5.
Sci Rep ; 7(1): 7071, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765599

RESUMO

Progress has been rapid in increasing the efficiency of energy conversion in nanoparticles. However, extraction of the photo-generated charge carriers remains challenging. Encouragingly, the charge mobility has been improved recently by driving nanoparticle (NP) films across the metal-insulator transition (MIT). To simulate MIT in NP films, we developed a hierarchical Kinetic Monte Carlo transport model. Electrons transfer between neighboring NPs via activated hopping when the NP energies differ by more than an overlap energy, but transfer by a non-activated quantum delocalization, if the NP energies are closer than the overlap energy. As the overlap energy increases, emerging percolating clusters support a metallic transport across the entire film. We simulated the evolution of the temperature-dependent electron mobility. We analyzed our data in terms of two candidate models of the MIT: (a) as a Quantum Critical Transition, signaled by an effective gap going to zero; and (b) as a Quantum Percolation Transition, where a sample-spanning metallic percolation path is formed as the fraction of the hopping bonds in the transport paths is going to zero. We found that the Quantum Percolation Transition theory provides a better description of the MIT. We also observed an anomalously low gap region next to the MIT. We discuss the relevance of our results in the light of recent experimental measurements.

6.
ACS Nano ; 9(7): 6882-90, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26042468

RESUMO

The Intermediate Band (IB) solar cell concept is a promising idea to transcend the Shockley-Queisser limit. Using the results of first-principles calculations, we propose that colloidal nanoparticles (CNPs) are a viable and efficient platform for the implementation of the IB solar cell concept. We focused on CdSe CNPs and we showed that intragap states present in the isolated CNPs with reconstructed surfaces combine to form an IB in arrays of CNPs, which is well separated from the valence and conduction band edges. We demonstrated that optical transitions to and from the IB are active. We also showed that the IB can be electron doped in a solution, e.g., by decamethylcobaltocene, thus activating an IB-induced absorption process. Our results, together with the recent report of a nearly 10% efficient CNP solar cell, indicate that colloidal nanoparticle intermediate band solar cells are a promising platform to overcome the Shockley-Queisser limit.

7.
Phys Rev Lett ; 112(10): 106801, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24679319

RESUMO

We propose that embedding silicon nanoparticles (NP) into amorphous, nonstoichiometric ZnS leads to promising nanocomposites for solar energy conversion. Using ab initio molecular dynamics simulations we show that, upon high temperature amorphization of the host chalcogenide, sulfur atoms are drawn to the NP surface. We find that the sulfur content may be engineered to form a type II heterojunction, with complementary charge transport channels for electrons and holes, and that sulfur capping is beneficial to lower the nanoparticle gap, with respect to that of NPs embedded in oxide matrices. Our analysis is conducted using density functional theory with local and hybrid functionals and many body perturbation theory at the GW level.

8.
Sci Rep ; 4: 4204, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24569632

RESUMO

To develop a full understanding of interactions in nanomagnet arrays is a persistent challenge, critically impacting their technological acceptance. This paper reports the experimental, numerical and analytical investigation of interactions in arrays of Co nanoellipses using the first-order reversal curve (FORC) technique. A mean-field analysis has revealed the physical mechanisms giving rise to all of the observed features: a shift of the non-interacting FORC-ridge at the low-HC end off the local coercivity HC axis; a stretch of the FORC-ridge at the high-HC end without shifting it off the HC axis; and a formation of a tilted edge connected to the ridge at the low-HC end. Changing from flat to Gaussian coercivity distribution produces a negative feature, bends the ridge, and broadens the edge. Finally, nearest neighbor interactions segment the FORC-ridge. These results demonstrate that the FORC approach provides a comprehensive framework to qualitatively and quantitatively decode interactions in nanomagnet arrays.

9.
Phys Rev Lett ; 111(9): 097203, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24033067

RESUMO

We investigate the conditions required for general spin systems with frustration and disorder to display self-organized criticality, a property which so far has been established only for the fully connected infinite-range Sherrington-Kirkpatrick Ising spin-glass model [Phys. Rev. Lett. 83, 1034 (1999)]. Here, we study both avalanche and magnetization jump distributions triggered by an external magnetic field, as well as internal field distributions in the short-range Edwards-Anderson Ising spin glass for various space dimensions between 2 and 8, as well as the fixed-connectivity mean-field Viana-Bray model. Our numerical results, obtained on systems of unprecedented size, demonstrate that self-organized criticality is recovered only in the strict limit of a diverging number of neighbors and is not a generic property of spin-glass models in finite space dimensions.

10.
Nano Lett ; 9(11): 3780-5, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19785388

RESUMO

We have investigated high energy excitations in approximately 1-2 nm Si nanoparticles (NPs) by ab initio time-dependent density functional calculations, focusing on the influence on excitation spectra, of surface reconstruction, surface passivation by alkyl groups, and the interaction between NPs. We have found that surface reconstruction may change excitation spectra dramatically at both low and high energies above the gap; absorption may be enhanced nonlinearly by the presence of alkyl groups, compared to that of unreconstructed, hydrogenated Si NPs, and by the interaction between NPs. Our findings can help interpret the recent experiments on multielectron generation in colloidal semiconductor NPs as well as help optimize photovoltaic applications of NPs.

11.
Phys Rev Lett ; 102(6): 067205, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19257630

RESUMO

We present zero-temperature simulations for the single-particle density of states of the Coulomb glass. Our results in three dimensions are consistent with the Efros and Shklovskii prediction for the density of states. Finite-temperature Monte Carlo simulations show no sign of a thermodynamic glass transition down to low temperatures, in disagreement with mean-field theory. Furthermore, the random-displacement formulation of the model undergoes a transition into a distorted Wigner crystal for a surprisingly broad range of the disorder strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...