Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 17(9): 1344-1353, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26724481

RESUMO

Adhesion to host tissue is one of the key steps of the bacterial pathogenic process. Xanthomonas citri ssp. citri possesses a non-fimbrial adhesin protein, XacFhaB, required for bacterial attachment, which we have previously demonstrated to be an important virulence factor for the development of citrus canker. XacFhaB is a 4753-residue-long protein with a predicted ß-helical fold structure, involved in bacterial aggregation, biofilm formation and adhesion to the host. In this work, to further characterize this protein and considering its large size, XacFhaB was dissected into three regions based on bioinformatic and structural analyses for functional studies. First, the capacity of these protein regions to aggregate bacterial cells was analysed. Two of these regions were able to form bacterial aggregates, with the most amino-terminal region being dispensable for this activity. Moreover, XacFhaB shows features resembling pathogen-associated molecular patterns (PAMPs), which are recognized by plants. As PAMPs activate plant basal immune responses, the role of the three XacFhaB regions as elicitors of these responses was investigated. All adhesin regions were able to induce basal immune responses in host and non-host plants, with a stronger activation by the carboxyl-terminal region. Furthermore, pre-infiltration of citrus leaves with XacFhaB regions impaired X. citri ssp. citri growth, confirming the induction of defence responses and restraint of citrus canker. This work reveals that adhesins from plant pathogens trigger plant defence responses, opening up new pathways for the development of protective strategies for disease control.


Assuntos
Adesinas Bacterianas/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Fatores de Virulência/metabolismo , Xanthomonas/patogenicidade , Adesinas Bacterianas/química , Capsicum/microbiologia , Citrus/genética , Citrus/imunologia , Citrus/microbiologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/microbiologia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/microbiologia , Domínios Proteicos
2.
J Exp Bot ; 66(9): 2795-811, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25770587

RESUMO

Xanthomonas citri subsp. citri (Xcc) is a bacterial pathogen that causes citrus canker in susceptible Citrus spp. The Xcc genome contains genes encoding enzymes from three separate pathways of trehalose biosynthesis. Expression of genes encoding trehalose-6-phosphate synthase (otsA) and trehalose phosphatase (otsB) was highly induced during canker development, suggesting that the two-step pathway of trehalose biosynthesis via trehalose-6-phosphate has a function in pathogenesis. This pathway was eliminated from the bacterium by deletion of the otsA gene. The resulting XccΔotsA mutant produced less trehalose than the wild-type strain, was less resistant to salt and oxidative stresses, and was less able to colonize plant tissues. Gene expression and proteomic analyses of infected leaves showed that infection with XccΔotsA triggered only weak defence responses in the plant compared with infection with Xcc, and had less impact on the host plant's metabolism than the wild-type strain. These results suggested that trehalose of bacterial origin, synthesized via the otsA-otsB pathway, in Xcc, plays a role in modifying the host plant's metabolism to its own advantage but is also perceived by the plant as a sign of pathogen attack. Thus, trehalose biosynthesis has both positive and negative consequences for Xcc. On the one hand, it enables this bacterial pathogen to survive in the inhospitable environment of the leaf surface before infection and exploit the host plant's resources after infection, but on the other hand, it is a tell-tale sign of the pathogen's presence that triggers the plant to defend itself against infection.


Assuntos
Citrus/microbiologia , Trealose/fisiologia , Fatores de Virulência/metabolismo , Xanthomonas/patogenicidade , Vias Biossintéticas/genética , Citrus/metabolismo , Citrus/fisiologia , Resistência à Doença , Mutação , Estresse Oxidativo , Fotossíntese , Doenças das Plantas , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Proteoma , Cloreto de Sódio/metabolismo , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Trealose/biossíntese , Trealose/metabolismo , Trealose/farmacologia , Fatores de Virulência/genética , Xanthomonas/enzimologia , Xanthomonas/genética
3.
BMC Microbiol ; 14: 96, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24742141

RESUMO

BACKGROUND: Several bacterial plant pathogens colonize their hosts through the secretion of effector proteins by a Type III protein secretion system (T3SS). The role of T3SS in bacterial pathogenesis is well established but whether this system is involved in multicellular processes, such as bacterial biofilm formation has not been elucidated. Here, the phytopathogen Xanthomonas citri subsp. citri (X. citri) was used as a model to gain further insights about the role of the T3SS in biofilm formation. RESULTS: The capacity of biofilm formation of different X. citri T3SS mutants was compared to the wild type strain and it was observed that this secretion system was necessary for this process. Moreover, the T3SS mutants adhered proficiently to leaf surfaces but were impaired in leaf-associated growth. A proteomic study of biofilm cells showed that the lack of the T3SS causes changes in the expression of proteins involved in metabolic processes, energy generation, exopolysaccharide (EPS) production and bacterial motility as well as outer membrane proteins. Furthermore, EPS production and bacterial motility were also altered in the T3SS mutants. CONCLUSIONS: Our results indicate a novel role for T3SS in X. citri in the modulation of biofilm formation. Since this process increases X. citri virulence, this study reveals new functions of T3SS in pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Biofilmes/crescimento & desenvolvimento , Xanthomonas/fisiologia , Aderência Bacteriana , Mutação , Folhas de Planta/microbiologia , Proteoma/análise , Xanthomonas/genética , Xanthomonas/metabolismo
4.
BMC Microbiol ; 13: 186, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23924281

RESUMO

BACKGROUND: Xanthomonas axonopodis pv. citri (X. a. pv. citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. citri this process is a requirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. RESULTS: In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. citri mature biofilm and planktonic cells were evaluated by quantitative real-time PCR and shown to consistently correlate with those deduced from the proteomic study. CONCLUSIONS: Differentially expressed proteins are enriched in functional categories. Firstly, proteins that are down-regulated in X. a. pv. citri biofilms are enriched for the gene ontology (GO) terms 'generation of precursor metabolites and energy' and secondly, the biofilm proteome mainly changes in 'outer membrane and receptor or transport'. We argue that the differentially expressed proteins have a critical role in maintaining a functional external structure as well as enabling appropriate flow of nutrients and signals specific to the biofilm lifestyle.


Assuntos
Proteínas de Bactérias/química , Biofilmes , Citrus/microbiologia , Doenças das Plantas/microbiologia , Proteômica , Xanthomonas axonopodis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Xanthomonas axonopodis/química , Xanthomonas axonopodis/fisiologia
5.
J Biomed Biotechnol ; 2011: 354801, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22131803

RESUMO

Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens.


Assuntos
Bactérias/patogenicidade , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Plantas/microbiologia , Proteômica/métodos , Interações Hospedeiro-Patógeno/genética , Plantas/genética , Plantas/metabolismo
6.
Commun Integr Biol ; 3(4): 382-4, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20798833

RESUMO

The role of photosynthesis in plant defense is a fundamental question awaiting further molecular and physiological elucidation. To this end we investigated host responses to infection with the bacterial pathogen Xanthomonas axonopodis pv. citri, the pathogen responsible for citrus canker. This pathogen encodes a plant-like natriuretic peptide (XacPNP) that is expressed specifically during the infection process and prevents deterioration of the physiological condition of the infected tissue. Proteomic assays of citrus leaves infected with a XacPNP deletion mutant (DeltaXacPNP) resulted in a major reduction in photosynthetic proteins such as Rubisco, Rubisco activase and ATP synthase as a compared with infection with wild type bacteria. In contrast, infiltration of citrus leaves with recombinant XacPNP caused an increase in these host proteins and a concomitant increase in photosynthetic efficiency as measured by chlorophyll fluorescence assays. Reversion of the reduction in photosynthetic efficiency in citrus leaves infected with DeltaXacPNP was achieved by the application of XacPNP or Citrus sinensis PNP lending support to a case of molecular mimicry. Finally, given that DeltaXacPNP infection is less successful than infection with the wild type, it appears that reducing photosynthesis is an effective plant defense mechanism against biotrophic pathogens.

7.
BMC Plant Biol ; 10: 51, 2010 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-20302677

RESUMO

BACKGROUND: Plant natriuretic peptides (PNPs) belong to a novel class of peptidic signaling molecules that share some structural similarity to the N-terminal domain of expansins and affect physiological processes such as water and ion homeostasis at nano-molar concentrations. The citrus pathogen Xanthomonas axonopodis pv. citri possesses a PNP-like peptide (XacPNP) uniquely present in this bacteria. Previously we observed that the expression of XacPNP is induced upon infection and that lesions produced in leaves infected with a XacPNP deletion mutant were more necrotic and lead to earlier bacterial cell death, suggesting that the plant-like bacterial PNP enables the plant pathogen to modify host responses in order to create conditions favorable to its own survival. RESULTS: Here we measured chlorophyll fluorescence parameters and water potential of citrus leaves infiltrated with recombinant purified XacPNP and demonstrate that the peptide improves the physiological conditions of the tissue. Importantly, the proteomic analysis revealed that these responses are mirrored by rapid changes in the host proteome that include the up-regulation of Rubisco activase, ATP synthase CF1 alpha subunit, maturase K, and alpha- and beta-tubulin. CONCLUSIONS: We demonstrate that XacPNP induces changes in host photosynthesis at the level of protein expression and in photosynthetic efficiency in particular. Our findings suggest that the biotrophic pathogen can use the plant-like hormone to modulate the host cellular environment and in particular host metabolism and that such modulations weaken host defence.


Assuntos
Citrus/metabolismo , Citrus/microbiologia , Interações Hospedeiro-Patógeno , Peptídeos Natriuréticos/metabolismo , Proteoma/metabolismo , Xanthomonas axonopodis/metabolismo , Arabidopsis/metabolismo , Clorofila/metabolismo , Biologia Computacional , Eletroforese em Gel Bidimensional , Fluorescência , Espectrometria de Massas , Mutação/genética , Fotossíntese , Folhas de Planta/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/química , Regiões Promotoras Genéticas/genética , Proteoma/química , Proteômica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...