Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 150(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882667

RESUMO

A mouse organoid culture model was developed to regenerate articular cartilage by sequential treatment with BMP2 and BMP9 (or GDF2) that parallels induced joint regeneration at digit amputation wounds in vivo. BMP9-induced chondrogenesis was used to identify clonal cell lines for articular chondrocyte and hypertrophic chondrocyte progenitor cells from digit fibroblasts. A protocol that includes cell aggregation enhanced by BMP2 followed by BMP9-induced chondrogenesis resulted in the differentiation of organized layers of articular chondrocytes, similar to the organization of middle and deep zones of articular cartilage in situ, and retained a differentiated phenotype following transplantation. In addition, the differentiation of a non-chondrogenic connective tissue layer containing articular chondrocyte progenitor cells demonstrated that progenitor cell sequestration is coupled with articular cartilage differentiation at a clonal level. The studies identify a dormant endogenous regenerative program for a non-regenerative tissue in which fibroblast-derived progenitor cells can be induced to initiate morphogenetic and differentiative programs that include progenitor cell sequestration. The identification of dormant regenerative programs in non-regenerative tissues such as articular cartilage represents a novel strategy that integrates regeneration biology with regenerative medicine.


Assuntos
Cartilagem Articular , Animais , Camundongos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Células-Tronco , Diferenciação Celular/genética , Linhagem Celular , Modelos Animais de Doenças , Condrogênese/genética
3.
Mol Hum Reprod ; 29(2)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36637195

RESUMO

Increasingly, couples struggling with fertility turn to assisted reproductive techniques, including IVF, to have children. Despite the demonstrated influence of periconception male health and lifestyle choices on offspring development, studies examining IVF success rates and child health outcomes remain exclusively focused on maternal factors. Using a physiologically relevant mouse model, we tested the hypothesis that chronic paternal preconception alcohol intake adversely affects IVF success and negatively impacts IVF offspring fetoplacental growth. Using a voluntary, binge-like mouse model, we exposed sexually mature C57BL/6J males to three preconception treatments (0% (Control), 6% EtOH or 10% EtOH) for 6 weeks, isolated and cryopreserved caudal sperm from treated males, and then used these samples to fertilize oocytes before assessing IVF embryo developmental outcomes. We found that preconception paternal alcohol use reduced IVF embryo survival and pregnancy success rates in a dose-dependent manner, with the pregnancy success rate of the 10% EtOH treatment falling to half those of the Controls. Mechanistically, we found that preconception paternal alcohol exposure disrupts embryonic gene expression, including Fgf4 and Egfr, two critical regulators of trophectoderm stem cell growth and placental patterning, with lasting impacts on the histological organization of the late-term placenta. The changes in placental histoarchitecture were accompanied by altered regulation of pathways controlling mitochondrial function, oxidative phosphorylation and some imprinted genes. Our studies indicate that male alcohol use may significantly impede IVF success rates, increasing the couple's financial burden and emotional stress, and highlights the need to expand prepregnancy messaging to emphasize the reproductive dangers of alcohol use by both parents.


Assuntos
Etanol , Fertilização in vitro , Exposição Paterna , Taxa de Gravidez , Animais , Feminino , Masculino , Camundongos , Gravidez , Camundongos Endogâmicos C57BL , Placenta , Sêmen , Etanol/efeitos adversos
4.
Front Cell Dev Biol ; 10: 930375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36036017

RESUMO

Hormesis refers to graded adaptive responses to harmful environmental stimuli where low-level toxicant exposures stimulate tissue growth and responsiveness while, in contrast, higher-level exposures induce toxicity. Although the intergenerational inheritance of programmed hormetic growth responses is described in plants and insects, researchers have yet to observe this phenomenon in mammals. Using a physiologically relevant mouse model, we demonstrate that chronic preconception paternal alcohol exposures program nonlinear, dose-dependent changes in offspring fetoplacental growth. Our studies identify an inverse j-shaped curve with a threshold of 2.4 g/Kg per day; below this threshold, paternal ethanol exposures induce programmed increases in placental growth, while doses exceeding this point yield comparative decreases in placental growth. In male offspring, higher paternal exposures induce dose-dependent increases in the placental labyrinth layer but do not impact fetal growth. In contrast, the placental hypertrophy induced by low-level paternal ethanol exposures associate with increased offspring crown-rump length, particularly in male offspring. Finally, alterations in placental physiology correlate with disruptions in both mitochondrial-encoded and imprinted gene expression. Understanding the influence of ethanol on the paternally-inherited epigenetic program and downstream hormetic responses in offspring growth may help explain the enormous variation observed in fetal alcohol spectrum disorder (FASD) phenotypes and incidence.

5.
Dev Biol ; 486: 71-80, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35353991

RESUMO

It is long-established that innervation-dependent production of neurotrophic factors is required for blastema formation and epimorphic regeneration of appendages in fish and amphibians. The regenerating mouse digit tip and the human fingertip are mammalian models for epimorphic regeneration, and limb denervation in mice inhibits this response. A complicating issue of limb denervation studies in terrestrial vertebrates is that the experimental models also cause severe paralysis therefore impairing appendage use and diminishing mechanical loading of the denervated tissues. Thus, it is unclear whether the limb denervation impairs regeneration via loss of neurotrophic signaling or loss of mechanical load, or both. Herein, we developed a novel surgical procedure in which individual digits were specifically denervated without impairing ambulation and mechanical loading. We demonstrate that digit specific denervation does not inhibit but attenuates digit tip regeneration, in part due to a delay in wound healing. However, treating denervated digits with a wound dressing that enhances closure results in a partial rescue of the regeneration response. Contrary to the current understanding of mammalian epimorphic regeneration, these studies demonstrate that mouse digit tip regeneration is not peripheral nerve dependent, an observation that should inform continued mammalian regenerative medicine approaches.


Assuntos
Amputação Cirúrgica , Extremidades , Animais , Denervação , Extremidades/fisiologia , Mamíferos , Camundongos , Cicatrização/fisiologia
6.
Stem Cell Res Ther ; 13(1): 62, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130972

RESUMO

BACKGROUND: Structural regeneration of amputated appendages by blastema-mediated, epimorphic regeneration is a process whose mechanisms are beginning to be employed for inducing regeneration. While epimorphic regeneration is classically studied in non-amniote vertebrates such as salamanders, mammals also possess a limited ability for epimorphic regeneration, best exemplified by the regeneration of the distal mouse digit tip. A fundamental, but still unresolved question is whether epimorphic regeneration and blastema formation is exhaustible, similar to the finite limits of stem-cell mediated tissue regeneration. METHODS: In this study, distal mouse digits were amputated, allowed to regenerate and then repeatedly amputated. To quantify the extent and patterning of the regenerated digit, the digit bone as the most prominent regenerating element in the mouse digit was followed by in vivo µCT. RESULTS: Analyses revealed that digit regeneration is indeed progressively attenuated, beginning after the second regeneration cycle, but that the pattern is faithfully restored until the end of the fourth regeneration cycle. Surprisingly, when unamputated digits in the vicinity of repeatedly amputated digits were themselves amputated, these new amputations also exhibited a similarly attenuated regeneration response, suggesting a systemic component to the amputation injury response. CONCLUSIONS: In sum, these data suggest that epimorphic regeneration in mammals is finite and due to the exhaustion of the proliferation and differentiation capacity of the blastema cell source.


Assuntos
Amputação Cirúrgica , Cicatrização , Animais , Diferenciação Celular , Extremidades , Mamíferos , Camundongos , Cicatrização/fisiologia
7.
Development ; 149(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35005773

RESUMO

Amputation injuries in mammals are typically non-regenerative; however, joint regeneration is stimulated by BMP9 treatment, indicating the presence of latent articular chondrocyte progenitor cells. BMP9 induces a battery of chondrogenic genes in vivo, and a similar response is observed in cultures of amputation wound cells. Extended cultures of BMP9-treated cells results in differentiation of hyaline cartilage, and single cell RNAseq analysis identified wound fibroblasts as BMP9 responsive. This culture model was used to identify a BMP9-responsive adult fibroblast cell line and a culture strategy was developed to engineer hyaline cartilage for engraftment into an acutely damaged joint. Transplanted hyaline cartilage survived engraftment and maintained a hyaline cartilage phenotype, but did not form mature articular cartilage. In addition, individual hypertrophic chondrocytes were identified in some samples, indicating that the acute joint injury site can promote osteogenic progression of engrafted hyaline cartilage. The findings identify fibroblasts as a cell source for engineering articular cartilage and establish a novel experimental strategy that bridges the gap between regeneration biology and regenerative medicine.


Assuntos
Diferenciação Celular , Fibroblastos/citologia , Cartilagem Hialina/citologia , Regeneração , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrogênese , Fibroblastos/efeitos dos fármacos , Fator 2 de Diferenciação de Crescimento/farmacologia , Cartilagem Hialina/metabolismo , Cartilagem Hialina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID
8.
J Bone Miner Res ; 37(2): 312-322, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34783092

RESUMO

Amputation of the mouse digit tip results in blastema-mediated regeneration. In this model, new bone regenerates de novo to lengthen the amputated stump bone, resulting in a functional replacement of the terminal phalangeal element along with associated non-skeletal tissues. Physiological examples of bone repair, such as distraction osteogenesis and fracture repair, are well known to require mechanical loading. However, the role of mechanical loading during mammalian digit tip regeneration is unknown. In this study, we demonstrate that reducing mechanical loading inhibits blastema formation by attenuating bone resorption and wound closure, resulting in the complete inhibition of digit regeneration. Mechanical unloading effects on wound healing and regeneration are completely reversible when mechanical loading is restored. Mechanical unloading after blastema formation results in a reduced rate of de novo bone formation, demonstrating mechanical load dependence of the bone regenerative response. Moreover, enhancing the wound-healing response of mechanically unloaded digits with the cyanoacrylate tissue adhesive Dermabond improves wound closure and partially rescues digit tip regeneration. Taken together, these results demonstrate that mammalian digit tip regeneration is mechanical load-dependent. Given that human fingertip regeneration shares many characteristics with the mouse digit tip, these results identify mechanical load as a previously unappreciated requirement for de novo bone regeneration in humans. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osteogênese , Cicatrização , Amputação Cirúrgica , Animais , Regeneração Óssea/fisiologia , Osso e Ossos , Camundongos
9.
FASEB J ; 35(12): e22035, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748230

RESUMO

Epigenetic mechanisms of paternal inheritance are an emerging area of interest in our efforts to understand fetal alcohol spectrum disorders. In rodent models examining maternal alcohol exposures, different maternal genetic backgrounds protect or sensitize offspring to alcohol-induced teratogenesis. However, whether maternal background can mitigate sperm-inherited alterations in developmental programming and modify the penetrance of growth defects induced by preconception paternal alcohol exposures remains unaddressed. In our previous studies examining pure C57Bl/6J crosses, the offspring of alcohol-exposed sires exhibited fetal growth restriction, enlarged placentas, and decreased placental efficiency. Here, we find that in contrast to our previous studies, the F1 offspring of alcohol-exposed C57Bl/6J sires and CD-1 dams do not exhibit fetal growth restriction, with male fetuses developing smaller placentas and increased placental efficiencies. However, in these hybrid offspring, preconception paternal alcohol exposure induces sex-specific changes in placental morphology. Specifically, the female offspring of alcohol-exposed sires displayed structural changes in the junctional and labyrinth zones, along with increased placental glycogen content. These changes in placental organization are accompanied by female-specific alterations in the expression of imprinted genes Cdkn1c and H19. Although male placentae do not display overt changes in placental histology, using RNA-sequencing, we identified programmed alterations in genes regulating oxidative phosphorylation, mitochondrial function, and Sirtuin signaling. Collectively, our data reveal that preconception paternal alcohol exposure transmits a stressor to developing offspring, that males and females exhibit distinct patterns of placental adaptation, and that maternal genetic background can modulate the effects of paternal alcohol exposure.


Assuntos
Adaptação Fisiológica , Etanol/toxicidade , Transtornos do Espectro Alcoólico Fetal/patologia , Retardo do Crescimento Fetal/patologia , Herança Paterna , Penetrância , Placenta/fisiopatologia , Animais , Epigênese Genética , Feminino , Transtornos do Espectro Alcoólico Fetal/etiologia , Retardo do Crescimento Fetal/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Gravidez , Fatores Sexuais , Transcriptoma
10.
Wound Repair Regen ; 29(1): 196-205, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32815252

RESUMO

Complete extremity regeneration in mammals is restricted to distal amputations of the digit tip, the terminal phalanx (P3). In mice, P3 regeneration is mediated via the formation of a blastema, a transient population of progenitor cells that form from the blending of periosteal and endosteal/marrow compartmentalized cells that undergo differentiation to restore the amputated structures. Compartmentalized blastema cells are formed independently, and periosteal compartment-derived cells are required for restoration of amputated skeletal length. P3 regenerative capacity is progressively attenuated at increasingly more proximal amputation levels, eventually resulting in regenerative failure. The continuum of regenerative capacity within the P3 wound milieu is a unique model to investigate mammalian blastema formation in response to distal amputation, as well as the healing response associated with regenerative failure at proximal amputation levels. We report that P3 proximal amputation healing, previously reported to result in regenerative failure, is not an example of complete regenerative failure, but instead is characterized by a limited bone regeneration response restricted to the endosteal/marrow compartment. The regeneration response is mediated by blastema formation within the endosteal/marrow compartment, and blastemal osteogenesis progresses through intramembranous ossification in a polarized proximal to distal sequence. Unlike bone regeneration following distal P3 amputation, osteogenesis within the periosteal compartment is not observed in response to proximal P3 amputation. We provide evidence that proximal P3 amputation initiates the formation of fibrotic tissue that isolates the endosteal/marrow compartment from the periosteal compartment and wound epidermis. While the fibrotic response is transient and later resolved, these studies demonstrate that blastema formation and fibrosis can occur in close proximity, with the regenerative response dominating the final outcome. Moreover, the results suggest that the attenuated proximal P3 regeneration response is associated with the absence of periosteal-compartment participation in blastema formation and bone regeneration.


Assuntos
Amputação Cirúrgica , Regeneração Óssea/fisiologia , Membro Posterior/fisiologia , Osteogênese/fisiologia , Cicatrização/fisiologia , Ferimentos e Lesões/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Membro Posterior/diagnóstico por imagem , Membro Posterior/cirurgia , Camundongos , Ferimentos e Lesões/patologia , Microtomografia por Raio-X
11.
J Vis Exp ; (149)2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31355793

RESUMO

Here, we present a protocol of adult mouse distal terminal phalanx (P3) amputation, a procedurally simple and reproducible mammalian model of epimorphic regeneration, which involves blastema formation and intramembranous ossification analyzed by fluorescence immunohistochemistry and sequential in-vivo microcomputed tomography (µCT). Mammalian regeneration is restricted to amputations transecting the distal region of the terminal phalanx (P3); digits amputated at more proximal levels fail to regenerate and undergo fibrotic healing and scar formation. The regeneration response is mediated by the formation of a proliferative blastema, followed by bone regeneration via intramembranous ossification to restore the amputated skeletal length. P3 amputation is a preclinical model to investigate epimorphic regeneration in mammals, and is a powerful tool for the design of therapeutic strategies to replace fibrotic healing with a successful regenerative response. Our protocol uses fluorescence immunohistochemistry to 1) identify early-and-late blastema cell populations, 2) study revascularization in the context of regeneration, and 3) investigate intramembranous ossification without the need for complex bone stabilization devices. We also demonstrate the use of sequential in vivo µCT to create high resolution images to examine morphological changes after amputation, as well as quantify volume and length changes in the same digit over the course of regeneration. We believe this protocol offers tremendous utility to investigate both epimorphic and tissue regenerative responses in mammals.


Assuntos
Regeneração Óssea/fisiologia , Membro Posterior/cirurgia , Osteogênese/fisiologia , Cicatrização/fisiologia , Amputação Cirúrgica , Animais , Modelos Animais de Doenças , Mamíferos , Camundongos
12.
Nat Commun ; 10(1): 424, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723209

RESUMO

A major goal of regenerative medicine is to stimulate tissue regeneration after traumatic injury. We previously discovered that treating digit amputation wounds with BMP2 in neonatal mice stimulates endochondral ossification to regenerate the stump bone. Here we show that treating the amputation wound with BMP9 stimulates regeneration of a synovial joint that forms an articulation with the stump bone. Regenerated structures include a skeletal element lined with articular cartilage and a synovial cavity, and we demonstrate that this response requires the Prg4 gene. Combining BMP2 and BMP9 treatments in sequence stimulates the regeneration of bone and joint. These studies provide evidence that treatment of growth factors can be used to engineer a regeneration response from a non-regenerating amputation wound.


Assuntos
Dedos/cirurgia , Fator 2 de Diferenciação de Crescimento/metabolismo , Articulações/fisiopatologia , Ferimentos e Lesões/metabolismo , Amputação Cirúrgica , Animais , Regeneração Óssea , Cartilagem Articular/metabolismo , Cartilagem Articular/fisiopatologia , Feminino , Fator 2 de Diferenciação de Crescimento/genética , Humanos , Articulações/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo , Cicatrização , Ferimentos e Lesões/genética , Ferimentos e Lesões/fisiopatologia
13.
Dev Biol ; 445(2): 237-244, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30458171

RESUMO

Mice are intrinsically capable of regenerating the tips of their digits after amputation. Mouse digit tip regeneration is reported to be a peripheral nerve-dependent event. However, it is presently unknown what types of nerves and Schwann cells innervate the digit tip, and to what extent these cells regenerate in association with the regenerative response. Given the necessity of peripheral nerves for mammalian regeneration, we investigated the neuroanatomy of the unamputated, regenerating, and regenerated mouse digit tip. Using immunohistochemistry for ß-III-tubulin (ß3T) or neurofilament H (NFH), substance P (SP), tyrosine hydroxylase (TH), myelin protein zero (P0), and glial fibrillary acidic protein (GFAP), we identified peripheral nerve axons (sensory and sympathetic), and myelinating- and non-myelinating-Schwann cells. Our findings show that the digit tip is innervated by two digital nerves that each bifurcate into a bone marrow (BM) and connective tissue (CT) branch. The BM branches are composed of sympathetic axons that are ensheathed by non-myelinating-Schwann cells whereas the CT branches are composed of sensory and sympathetic axons and are ensheathed by myelinating- and non-myelinating-Schwann cells. The regenerated digit neuroanatomy differs from unamputated digit in several key ways. First, there is 7.5 fold decrease in CT branch axons in the regenerated digit compared to the unampuated digit. Second, there is a 5.6 fold decrease in myelinating-Schwann cells in the regenerated digit compared to the unamputated digit that is consistent with the decrease in CT branch axons. Importantly, we also find that the central portion of the regenerating digit blastema is aneural, with axons and Schwann cells restricted to peripheral and distal blastema regions. Finally, we show that even with impaired innervation, digits maintain the ability to regenerate after re-amputation. Taken together, these data indicate that nerve regeneration is impaired in the context of mouse digit tip regeneration.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Regeneração/fisiologia , Amputação Cirúrgica , Animais , Axônios/ultraestrutura , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Camundongos , Proteínas de Neurofilamentos/metabolismo , Nervos Periféricos/anatomia & histologia , Nervos Periféricos/fisiologia , Células de Schwann/fisiologia , Dedos do Pé/anatomia & histologia , Dedos do Pé/inervação , Dedos do Pé/fisiologia , Tubulina (Proteína)/metabolismo
14.
Wound Repair Regen ; 26(3): 263-273, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-30120800

RESUMO

While mammals cannot regenerate amputated limbs, mice and humans have regenerative ability restricted to amputations transecting the digit tip, including the terminal phalanx (P3). In mice, the regeneration process is epimorphic and mediated by the formation of a blastema comprised of undifferentiated proliferating cells that differentiate to regenerate the amputated structures. Blastema formation distinguishes the regenerative response from a scar-forming healing response. The mouse digit tip serves as a preclinical model to investigate mammalian blastema formation and endogenous regenerative capabilities. We report that P3 blastema formation initiates prior to epidermal closure and concurrent with the bone histolytic response. In this early healing response, proliferation and cells entering the early stages of osteogenesis are localized to the periosteal and endosteal bone compartments. After the completion of stump bone histolysis, epidermal closure is completed and cells associated with the periosteal and endosteal compartments blend to form the blastema proper. Osteogenesis associated with the periosteum occurs as a polarized progressive wave of new bone formation that extends from the amputated stump and restores skeletal length. Bone patterning is restored along the proximal-distal and medial digit axes, but is imperfect in the dorsal-ventral axis with the regeneration of excessive new bone that accounts for the enhanced regenerated bone volume noted in previous studies. Periosteum depletion studies show that this compartment is required for the regeneration of new bone distal to the original amputation plane. These studies provide evidence that blastema formation initiates early in the healing response and that the periosteum is an essential tissue for successful epimorphic regeneration in mammals.


Assuntos
Amputação Cirúrgica , Osteogênese/fisiologia , Periósteo/metabolismo , Regeneração/fisiologia , Medicina Regenerativa , Falanges dos Dedos do Pé/fisiologia , Cicatrização/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos , Neovascularização Fisiológica , Falanges dos Dedos do Pé/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...