Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 209(Pt 24): 5038-50, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17142692

RESUMO

Blainville's beaked whales (Mesoplodon densirostris Blainville) echolocate for prey during deep foraging dives. Here we use acoustic tags to demonstrate that these whales, in contrast to other toothed whales studied, produce two distinct types of click sounds during different phases in biosonar-based foraging. Search clicks are emitted during foraging dives with inter-click intervals typically between 0.2 and 0.4 s. They have the distinctive form of an FM upsweep (modulation rate of about 110 kHz ms(-1)) with a -10 dB bandwidth from 26 to 51 kHz and a pulse length of 270 micros, somewhat similar to chirp signals in bats and Cuvier's beaked whales (Ziphius cavirostris Cuvier), but quite different from clicks of other toothed whales studied. In comparison, the buzz clicks, produced in short bursts during the final stage of prey capture, are short (105 micros) transients with no FM structure and a -10 dB bandwidth from 25 to 80 kHz or higher. Buzz clicks have properties similar to clicks reported from large delphinids and hold the potential for higher temporal resolution than the FM clicks. It is suggested that the two click types are adapted to the separate problems of target detection and classification versus capture of low target strength prey in a cluttered acoustic environment.


Assuntos
Ecolocação/classificação , Comportamento Predatório , Baleias/fisiologia , Animais , Tamanho Corporal , Mergulho , Ecolocação/fisiologia , Baleias/anatomia & histologia
2.
J Exp Biol ; 208(Pt 2): 181-94, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15634839

RESUMO

Toothed whales (Cetacea, odontoceti) emit sound pulses to probe their surroundings by active echolocation. Non-invasive, acoustic Dtags were placed on deep-diving Blainville's beaked whales (Mesoplodon densirostris) to record their ultrasonic clicks and the returning echoes from prey items, providing a unique view on how a whale operates its biosonar during foraging in the wild. The process of echolocation during prey capture in this species can be divided into search, approach and terminal phases, as in echolocating bats. The approach phase, defined by the onset of detectable echoes recorded on the tag for click sequences terminated by a buzz, has interclick intervals (ICI) of 300-400 ms. These ICIs are more than a magnitude longer than the decreasing two-way travel time to the targets, showing that ICIs are not given by the two-way-travel times plus a fixed, short lag time. During the approach phase, the received echo energy increases by 10.4(+/-2) dB when the target range is halved, demonstrating that the whales do not employ range-compensating gain control of the transmitter, as has been implicated for some bats and dolphins. The terminal/buzz phase with ICIs of around 10 ms is initiated when one or more targets are within approximately a body length of the whale (2-5 m), so that strong echo returns in the approach phase are traded for rapid updates in the terminal phase. It is suggested that stable ICIs in the search and approach phases facilitate auditory scene analysis in a complex multi-target environment, and that a concomitant low click rate allows the whales to maintain high sound pressure outputs for prey detection and discrimination with a pneumatically driven, bi-modal sound generator.


Assuntos
Comportamento Apetitivo/fisiologia , Ecolocação/fisiologia , Comportamento Alimentar/fisiologia , Baleias/fisiologia , Acústica , Animais , Oceano Atlântico , Espectrografia do Som
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...