Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794042

RESUMO

A rugged handheld sensor for rapid in-field classification of cannabis samples based on their THC content using ultra-compact near-infrared spectrometer technology is presented. The device is designed for use by the Austrian authorities to discriminate between legal and illegal cannabis samples directly at the place of intervention. Hence, the sensor allows direct measurement through commonly encountered transparent plastic packaging made from polypropylene or polyethylene without any sample preparation. The measurement time is below 20 s. Measured spectral data are evaluated using partial least squares discriminant analysis directly on the device's hardware, eliminating the need for internet connectivity for cloud computing. The classification result is visually indicated directly on the sensor via a colored LED. Validation of the sensor is performed on an independent data set acquired by non-expert users after a short introduction. Despite the challenging setting, the achieved classification accuracy is higher than 80%. Therefore, the handheld sensor has the potential to reduce the number of unnecessarily confiscated legal cannabis samples, which would lead to significant monetary savings for the authorities.


Assuntos
Cannabis , Espectroscopia de Luz Próxima ao Infravermelho , Cannabis/química , Cannabis/classificação , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise Discriminante , Análise dos Mínimos Quadrados , Humanos , Dronabinol/análise
2.
Langmuir ; 39(23): 8153-8162, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37245124

RESUMO

The sol-gel process is an effective method for the preparation of homogeneous structured nanomaterials whose physico-chemical properties strongly depend on the experimental conditions applied. The control of a three-component reaction with silanes showing multiple reaction sites revealed the need for an analytical tool that allows a rapid response to ongoing transformations in the reaction mixture. Herein, we describe the implementation of near-infrared (NIR) spectroscopy based on compact, mechanically robust, and cost-efficient micro-optomechanical system technology in the sol-gel process of three silanes with a total of nine reaction sites. The NIR-spectroscopically controlled reaction yields a long-time stable product with reproducible quality, fulfilling the demanding requirements for further use in coating processes. 1H nuclear magnetic resonance measurements are used as reference values for the calibration of a partial least squares (PLS) regression model. The precise prediction of the desired parameters from collected NIR spectroscopy data acquired during the sol-gel reaction proves the applicability of the calibrated PLS regression model. The determined shelf-life and further processing tests verify the high quality of the sol-gel and the produced highly cross-linked polysilane.

3.
Anal Sci Adv ; 4(11-12): 335-346, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38715649

RESUMO

Surface-enhanced Raman scattering (SERS) is a sensitive and fast technique for sensing applications such as chemical trace analysis. However, a successful, high-throughput practical implementation necessitates the availability of simple-to-use and economical SERS substrates. In this work, we present a robust, reproducible, flexible and yet cost-effective SERS substrate suited for the sensitive detection of analytes at near-infrared (NIR) excitation wavelengths. The fabrication is based on a simple dropcast deposition of silver or gold nanomaterials on an aluminium foil support, making the design suitable for mass production. The fabricated SERS substrates can withstand very high average Raman laser power of up to 400 mW in the NIR wavelength range while maintaining a linear signal response of the analyte. This enables a combined high signal enhancement potential provided by (i) the field enhancement via the localized surface plasmon resonance introduced by the noble metal nanomaterials and (ii) additional enhancement proportional to an increase of the applicable Raman laser power without causing the thermal decomposition of the analyte. The application of the SERS substrates for the trace detection of melamine and rhodamine 6G is demonstrated, which shows limits of detection smaller than 0.1 ppm and analytical enhancement factors on the order of 104 as compared to bare aluminium foil.

4.
Polymers (Basel) ; 14(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35012030

RESUMO

Recent developments in mid-infrared (MIR) spectroscopic ellipsometry enabled by quantum cascade lasers (QCLs) have resulted in a drastic improvement in signal-to-noise ratio compared to conventional thermal emitter based instrumentation. Thus, it was possible to reduce the acquisition time for high-resolution broadband ellipsometric spectra from multiple hours to less than 1 s. This opens up new possibilities for real-time in-situ ellipsometry in polymer processing. To highlight these evolving capabilities, we demonstrate the benefits of a QCL based MIR ellipsometer by investigating single and multilayered polymer films. The molecular structure and reorientation of a 2.5 µm thin biaxially oriented polyethylene terephthalate film is monitored during a stretching process lasting 24.5 s to illustrate the perspective of ellipsometric measurements in dynamic processes. In addition, a polyethylene/ethylene vinyl alcohol/polyethylene multilayer film is investigated at a continuously varying angle of incidence (0∘- 50∘) in 17.2 s, highlighting an unprecedented sample throughput for the technique of varying angle spectroscopic ellipsometry in the MIR spectral range. The obtained results underline the superior spectral and temporal resolution of QCL ellipsometry and qualify this technique as a suitable method for advanced in-situ monitoring in polymer processing.

5.
Anal Bioanal Chem ; 412(9): 2103-2109, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31802180

RESUMO

Real-time measurements and adjustments of critical process parameters are essential for the precise control of fermentation processes and thus for increasing both quality and yield of the desired product. However, the measurement of some crucial process parameters such as biomass, product, and product precursor concentrations usually requires time-consuming offline laboratory analysis. In this work, we demonstrate the in-line monitoring of biomass, penicillin (PEN), and phenoxyacetic acid (POX) in a Penicilliumchrysogenum fed-batch fermentation process using low-cost microspectrometer technology operating in the near-infrared (NIR). In particular, NIR reflection spectra were taken directly through the glass wall of the bioreactor, which eliminates the need for an expensive NIR immersion probe. Furthermore, the risk of contaminations in the reactor is significantly reduced, as no direct contact with the investigated medium is required. NIR spectra were acquired using two sensor modules covering the spectral ranges 1350-1650 nm and 1550-1950 nm. Based on offline reference analytics, partial least squares (PLS) regression models were established for biomass, PEN, and POX either using data from both sensors separately or jointly. The established PLS models were tested on an independent validation fed-batch experiment. Root mean squared errors of prediction (RMSEP) were 1.61 g/L, 1.66 g/L, and 0.67 g/L for biomass, PEN, and POX, respectively, which can be considered an acceptable accuracy comparable with previously published results using standard process spectrometers with immersion probes. Altogether, the presented results underpin the potential of low-cost microspectrometer technology in real-time bioprocess monitoring applications. Graphical abstract.


Assuntos
Acetatos/metabolismo , Penicilinas/metabolismo , Penicillium chrysogenum/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Acetatos/análise , Técnicas de Cultura Celular por Lotes/instrumentação , Técnicas de Cultura Celular por Lotes/métodos , Biomassa , Reatores Biológicos , Desenho de Equipamento , Fermentação , Análise dos Mínimos Quadrados , Penicilinas/análise , Penicillium chrysogenum/química , Penicillium chrysogenum/crescimento & desenvolvimento , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação
6.
Opt Lett ; 44(14): 3426-3429, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31305539

RESUMO

Laser-based infrared spectroscopic ellipsometry (SE) is demonstrated for the first time, to the best of our knowledge, by applying a tunable quantum cascade laser (QCL) as a mid-infrared light source. The fast tunability of the employed QCL, combined with phase-modulated polarization, enabled the acquisition of broadband (900-1204 cm-1), high-resolution (1 cm-1) ellipsometry spectra in less than 1 second. A comparison to a conventional Fourier-transform spectrometer-based IR ellipsometer resulted in an improved signal-to-noise ratio (SNR) by a factor of at least 290. The ellipsometry setup was finally applied for the real-time monitoring of molecular reorientation during the stretching process of an anisotropic polypropylene film, thereby illustrating the advantage of sub-second time resolution. The developed method exceeds existing instrumentation by its fast acquisition and high SNR, which could open up a set of new applications of SE such as ellipsometric inline process monitoring and quality control.

7.
Opt Express ; 26(23): 30644-30654, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30469958

RESUMO

Chemical mapping was demonstrated with a mid-infrared (MIR) microspectroscopy setup based on a supercontinuum source (SC) emitting in the spectral range from 1.55 to 4.5 µm and a MEMS-based Fabry-Pérot filter spectrometer. Diffraction limited spatial resolution in reflection geometry was achieved. A multilayer film consisting of different polymers and mixtures thereof was measured and results were compared to those gained with a conventional FTIR microscope equipped with a thermal MIR source. Results show that compared to thermal sources, the application of the SC source results in higher signal-to-noise ratios together with better spatial resolution and faster scanning. Furthermore, diffraction limited imaging of red blood cells was demonstrated for the first time in the MIR spectral region in reflection mode. The distinctive characteristics of the MIR spectral region in conjunction with the high brightness, spatial coherence and broadband nature of supercontinuum radiation show the potential for improving infrared microscopy significantly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...