Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
PLoS One ; 19(4): e0299267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568950

RESUMO

BACKGROUND AND OBJECTIVE: Glioblastoma (GBM) is one of the most aggressive and lethal human cancers. Intra-tumoral genetic heterogeneity poses a significant challenge for treatment. Biopsy is invasive, which motivates the development of non-invasive, MRI-based machine learning (ML) models to quantify intra-tumoral genetic heterogeneity for each patient. This capability holds great promise for enabling better therapeutic selection to improve patient outcome. METHODS: We proposed a novel Weakly Supervised Ordinal Support Vector Machine (WSO-SVM) to predict regional genetic alteration status within each GBM tumor using MRI. WSO-SVM was applied to a unique dataset of 318 image-localized biopsies with spatially matched multiparametric MRI from 74 GBM patients. The model was trained to predict the regional genetic alteration of three GBM driver genes (EGFR, PDGFRA and PTEN) based on features extracted from the corresponding region of five MRI contrast images. For comparison, a variety of existing ML algorithms were also applied. Classification accuracy of each gene were compared between the different algorithms. The SHapley Additive exPlanations (SHAP) method was further applied to compute contribution scores of different contrast images. Finally, the trained WSO-SVM was used to generate prediction maps within the tumoral area of each patient to help visualize the intra-tumoral genetic heterogeneity. RESULTS: WSO-SVM achieved 0.80 accuracy, 0.79 sensitivity, and 0.81 specificity for classifying EGFR; 0.71 accuracy, 0.70 sensitivity, and 0.72 specificity for classifying PDGFRA; 0.80 accuracy, 0.78 sensitivity, and 0.83 specificity for classifying PTEN; these results significantly outperformed the existing ML algorithms. Using SHAP, we found that the relative contributions of the five contrast images differ between genes, which are consistent with findings in the literature. The prediction maps revealed extensive intra-tumoral region-to-region heterogeneity within each individual tumor in terms of the alteration status of the three genes. CONCLUSIONS: This study demonstrated the feasibility of using MRI and WSO-SVM to enable non-invasive prediction of intra-tumoral regional genetic alteration for each GBM patient, which can inform future adaptive therapies for individualized oncology.


Assuntos
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Medicina de Precisão , Heterogeneidade Genética , Imageamento por Ressonância Magnética/métodos , Algoritmos , Aprendizado de Máquina , Máquina de Vetores de Suporte , Receptores ErbB/genética
2.
World Neurosurg ; 185: 279-284, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387791

RESUMO

BACKGROUND: Fragmentation, disconnection, or entrapment of an in-use microcatheter during neuro-endovascular procedures is a known risk. Often a benign entity, retained catheters are not infrequently observed, but severe complications including thrombus, thromboembolic events, pseudoaneurysm, and limb ischemia have been described, necessitating retrieval. This technical case report demonstrates the safe use of an external carotid artery (ECA) approach for ligation and removal of a retained microcatheter after middle meningeal artery (MMA) embolization. This article also demonstrates the use of live intraoperative fluoroscopy as a surgical adjunct to ensure that the catheter is fully removed without any injury, shearing, or breakage during removal. METHODS: A 66-year-old male patient presented with bilateral subdural hematomas to an outside hospital. He subsequently underwent evacuation of the hematomas followed by a right-sided MMA embolization, complicated by Onyx (Medtronic, Minneapolis, MN) entrapment of the microcatheter in the MMA. The patient was asymptomatic, but there was significant concern about continuing antiplatelet/anticoagulation therapy in the presence of the subdural hematoma. We proceeded with an open surgical approach for catheter retrieval. As the catheter was withdrawn, intraoperative fluoroscopy demonstrated complete removal without any retained fragments. RESULTS: The patient recovered without event and was discharged on postoperative day 1. On follow-up the patient continued to do well without any complications from the fragment that remained in the external carotid circulation. CONCLUSIONS: This case and accompanying video demonstrates the effective use of open ECA surgical approach to retrieve the retained microcatheter after an MMA embolization. This approach allowed for safe and effective removal of the microcatheter while significantly reducing complication risks.


Assuntos
Artéria Carótida Externa , Embolização Terapêutica , Artérias Meníngeas , Humanos , Masculino , Idoso , Fluoroscopia , Embolização Terapêutica/métodos , Artérias Meníngeas/cirurgia , Artérias Meníngeas/diagnóstico por imagem , Artéria Carótida Externa/cirurgia , Catéteres , Microcirurgia/métodos , Remoção de Dispositivo/métodos , Hematoma Subdural/cirurgia , Hematoma Subdural/etiologia
3.
PLoS One ; 18(12): e0287767, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38117803

RESUMO

Brain cancers pose a novel set of difficulties due to the limited accessibility of human brain tumor tissue. For this reason, clinical decision-making relies heavily on MR imaging interpretation, yet the mapping between MRI features and underlying biology remains ambiguous. Standard (clinical) tissue sampling fails to capture the full heterogeneity of the disease. Biopsies are required to obtain a pathological diagnosis and are predominantly taken from the tumor core, which often has different traits to the surrounding invasive tumor that typically leads to recurrent disease. One approach to solving this issue is to characterize the spatial heterogeneity of molecular, genetic, and cellular features of glioma through the intraoperative collection of multiple image-localized biopsy samples paired with multi-parametric MRIs. We have adopted this approach and are currently actively enrolling patients for our 'Image-Based Mapping of Brain Tumors' study. Patients are eligible for this research study (IRB #16-002424) if they are 18 years or older and undergoing surgical intervention for a brain lesion. Once identified, candidate patients receive dynamic susceptibility contrast (DSC) perfusion MRI and diffusion tensor imaging (DTI), in addition to standard sequences (T1, T1Gd, T2, T2-FLAIR) at their presurgical scan. During surgery, sample anatomical locations are tracked using neuronavigation. The collected specimens from this research study are used to capture the intra-tumoral heterogeneity across brain tumors including quantification of genetic aberrations through whole-exome and RNA sequencing as well as other tissue analysis techniques. To date, these data (made available through a public portal) have been used to generate, test, and validate predictive regional maps of the spatial distribution of tumor cell density and/or treatment-related key genetic marker status to identify biopsy and/or treatment targets based on insight from the entire tumor makeup. This type of methodology, when delivered within clinically feasible time frames, has the potential to further inform medical decision-making by improving surgical intervention, radiation, and targeted drug therapy for patients with glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Imagem de Tensor de Difusão , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Biópsia , Encéfalo/patologia , Mapeamento Encefálico
5.
Nat Commun ; 14(1): 6066, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770427

RESUMO

Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution. Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting neuronal or glycolytic/plurimetabolic cellular states, two principal transcriptomic pathway-based glioma subtypes, which respectively demonstrate abundant private mutations or enrichment in immune cell signatures. These NE phenotypes are non-invasively identified through normalized K2 imaging signatures, which discern cell size heterogeneity on dynamic susceptibility contrast (DSC)-MRI. NE tumor populations predicted to display increased cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely associated with EGFR amplification and CDKN2A homozygous deletion. The biophysical mapping of infiltrative HGG potentially enables the clinical recognition of tumor subpopulations with aggressive molecular signatures driving tumor progression, thereby informing precision medicine targeting.


Assuntos
Produtos Biológicos , Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Homozigoto , Deleção de Sequência , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Imageamento por Ressonância Magnética/métodos
6.
medRxiv ; 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37503239

RESUMO

BACKGROUND: Glioblastoma is an extraordinarily heterogeneous tumor, yet the current treatment paradigm is a "one size fits all" approach. Hundreds of glioblastoma clinical trials have been deemed failures because they did not extend median survival, but these cohorts are comprised of patients with diverse tumors. Current methods of assessing treatment efficacy fail to fully account for this heterogeneity. METHODS: Using an image-based modeling approach, we predicted T-cell abundance from serial MRIs of patients enrolled in the dendritic cell (DC) vaccine clinical trial. T-cell predictions were quantified in both the contrast-enhancing and non-enhancing regions of the imageable tumor, and changes over time were assessed. RESULTS: A subset of patients in a DC vaccine clinical trial, who had previously gone undetected, were identified as treatment responsive and benefited from prolonged survival. A mere two months after initial vaccine administration, responsive patients had a decrease in model-predicted T-cells within the contrast-enhancing region, with a simultaneous increase in the T2/FLAIR region. CONCLUSIONS: In a field that has yet to see breakthrough therapies, these results highlight the value of machine learning in enhancing clinical trial assessment, improving our ability to prospectively prognosticate patient outcomes, and advancing the pursuit towards individualized medicine.

7.
Clin Med Insights Oncol ; 17: 11795549231161878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968334

RESUMO

Background: Radiation necrosis (RN) is a clinically relevant complication of stereotactic radiosurgery (SRS) for intracranial metastasis (ICM) treatments. Radiation necrosis development is variable following SRS. It remains unclear if risk factors for and clinical outcomes following RN may be different for melanoma patients. We reviewed patients with ICM from metastatic melanoma to understand the potential impact of RN in this patient population. Methods: Patients who received SRS for ICM from melanoma at Mayo Clinic Arizona between 2013 and 2018 were retrospectively reviewed. Data collected included demographics, tumor characteristics, radiation parameters, prior surgical and systemic treatments, and patient outcomes. Radiation necrosis was diagnosed by clinical evaluation including brain magnetic resonance imaging (MRI) and, in some cases, tissue evaluation. Results: Radiation necrosis was diagnosed in 7 (27%) of 26 patients at 1.6 to 38 months following initial SRS. Almost 92% of all patients received systemic therapy and 35% had surgical resection prior to SRS. Patients with RN trended toward having larger ICM and a prior history of surgical resection, although statistical significance was not reached. Among patients with resection, those who developed RN had a longer period between surgery and SRS start (mean 44 vs 33 days). Clinical improvement following treatment for RN was noted in 2 (29%) patients. Conclusions: Radiation necrosis is relatively common following SRS for treatment of ICM from metastatic melanoma and clinical outcomes are poor. Further studies aimed at mitigating RN development and identifying novel approaches for treatment are warranted.

8.
Seizure ; 101: 96-102, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35939857

RESUMO

OBJECTIVE: Although stereotactic EEG (sEEG) has become a widely used intracranial EEG technique, the significance of subclinical seizures (SCS) recorded on sEEG is unclear and studies examining this finding on sEEG are limited. We investigated (1) the prevalence of SCS in patients undergoing sEEG and clinical factors associated with their presence, (2) how often the subclinical seizure onset zone (SOZ) colocalizes with clinical SOZ, (3) the association of SCS and surgical outcomes, and (4) the influence of resection of the subclinical SOZ on surgical outcome. METHODS: We reviewed all patients who underwent intracranial monitoring with sEEG at our institution from 2015 through 2020 (n=169). Patient and seizure characteristics were recorded, as was concordance of subclinical and clinical seizures and post-surgical outcomes. RESULTS: SCS were observed during sEEG monitoring in 84 of 169 patients (50%). There was no difference in the prevalence of SCS based on imaging abnormalities, temporal vs extratemporal SOZ, number of electrodes, or pathology. SCS were more common in females than males (62% vs 40%, p=0.0054). SCS had complete concordance with clinical SOZ in 40% of patients, partial concordance in 29%, overlapping in 19%, and discordant in 12%. Eighty-three patients had surgery, 44 of whom had SCS. There was no difference in excellent outcome (ILAE 12 or 2) based on the presence of SCS or SCS concordance with clinical SOZ; however, there were improved outcomes in patients with complete resection of the subclinical SOZ compared with patients with incomplete resection (p =0.013). SIGNIFICANCE: These findings demonstrate that SCS are common during sEEG and colocalize with the clinical SOZ in most patients. Discordance with clinical SOZ does not necessarily predict poor surgical outcome; rather, complete surgical treatment of the subclinical SOZ correlates with excellent outcome. For unclear reasons, subclinical seizures occurred more commonly in females than males.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia Resistente a Medicamentos/cirurgia , Eletrocorticografia , Eletroencefalografia/métodos , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/cirurgia , Feminino , Humanos , Masculino , Prognóstico , Estudos Retrospectivos , Convulsões/diagnóstico , Convulsões/patologia , Convulsões/cirurgia
9.
Mayo Clin Proc Innov Qual Outcomes ; 6(4): 327-336, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35801155

RESUMO

Objectives: To provide a better understanding of methods that can be used to improve patient outcomes by reducing the door-to-groin puncture (DTP) time and present the results of a stroke quality improvement project (QIP) conducted by Mayo Clinic Arizona's stroke center. Methods: We conducted a systematic literature search of Ovid MEDLINE(R), Ovid EMBASE, Scopus, and Web of Science for studies that evaluated DTP time reduction strategies. Those determined eligible for the purpose of this analysis were assessed for quality. The strategies for DTP time reduction were categorized on the basis of modified Target: Stroke Phase III recommendations and analyzed using a meta-analysis. The Mayo Clinic QIP implemented a single-call activation system to reduce DTP times by decreasing the time from neurosurgery notification to case start. Results: Fourteen studies were selected for the analysis, consisting of 2277 patients with acute ischemic stroke secondary to large-vessel occlusions. After intervention, all the studies showed a reduction in the DTP time, with the pooled DTP improvement being the standardized mean difference (1.37; 95% confidence interval, 1.20-1.93; τ2=1.09; P<.001). The Mayo Clinic QIP similarly displayed a DTP time reduction, with the DTP time dropping from 125.1 to 82.5 minutes after strategy implementation. Conclusion: Computed tomography flow modifications produced the largest and most consistent reduction in the DTP time. However, the reduction in the DTP time across all the studies suggests that any systematic protocol aimed at reducing the DTP time can produce a beneficial effect. The relative novelty of mechanical thrombectomy and the consequential lack of research call for future investigation into the efficacy of varying DTP time reduction strategies.

11.
World Neurosurg ; 165: e520-e531, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35760326

RESUMO

BACKGROUND: Laser interstitial thermal therapy (LITT) is an emerging treatment modality for both primary brain tumors and metastases. We report initial outcomes after LITT for metastatic brain tumors across 3 sites at our institution and discuss potential strategies for optimal patient selection and outcomes. METHODS: International Classification of Diseases, Ninth Revision and Tenth Revision codes were used to identify patients with malignant brain tumors treated via LITT across all 3 Mayo Clinic sites with at least 6 months follow-up. Local control was based on radiologic and clinical evidence. Overall survival was measured from time of receiving LITT until death or end of the study period. RESULTS: Twenty-three patients were treated for progression of a single (n = 21) or multiple (n = 2) previously radiated metastatic lesions and/or radiation necrosis. Median age was 56 years (interquartile range, 47-66.5 years). LITT achieved local control of the lesion in most patients with metastatic tumors or radiation necrosis (n = 18; 81.8%) for the duration of follow-up. One patient did not have local control data available. Thirteen (56.5%) patients remained alive at the end of the study period. No other patients died of their treated disease during the study period; 5 of 10 deaths were attributable to central nervous system progression outside the treated lesion. Although median survival for this cohort has not yet been reached, the current median survival is 16 months (interquartile range, 12-48.5 months) after LITT for metastatic/radiation necrosis lesions. CONCLUSIONS: LITT was associated with sustained local control in 81.8% of patients treated for radiographic progression of metastatic central nervous system disease.


Assuntos
Neoplasias Encefálicas , Terapia a Laser , Lesões por Radiação , Neoplasias Encefálicas/cirurgia , Humanos , Lasers , Pessoa de Meia-Idade , Necrose , Seleção de Pacientes , Lesões por Radiação/cirurgia , Estudos Retrospectivos
14.
World Neurosurg ; 155: e335-e344, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34425289

RESUMO

OBJECTIVE: Although much research has examined nursing and physician burnout, the advanced practice provider (APP) population has not yet been studied. The goal of the present study was to survey APPs in neurosurgery to determine whether greater emotional intelligence (EI) is protective against burnout. METHODS: An 80-item survey was created that incorporated the Maslach Burnout Inventory Human Services Survey for Medical Personnel, the Trait Emotional Intelligence Questionnaire-short form, and original questions developed by us. The collective survey was distributed, administered, and collected using the web-based REDCap (Research Electronic Data Capture) platform. Statistical analyses were completed using a comparison between participants with and without burnout. RESULTS: A total of 106 neurosurgical APPs (26 men, 80 women) completed the survey, of whom, 57 (54%) reported current burnout. High average scores for personal accomplishment and global EI were inversely related to burnout (P = 0.034 and P = 0.003, respectively). In addition, the following factors were associated with burnout: inadequate support staff in the work place (P = 0.008), inadequate time off work (P < 0.001), inadequate administrative time (P = 0.009), not experiencing support from one's supervisor (P = 0.017), insufficient time for continuing medical education (P < 0.001), an inability to separate work from personal time (P < 0.001), and an inability to advance within one's professional field (P = 0.043). CONCLUSIONS: For neurosurgical APPs, EI is protective against burnout. Many opportunities exist at the individual and organizational level to alleviate burnout among neurosurgical APPs. Targeted strategies to improve work-life balance, EI, support systems, and opportunities for career development among neurosurgical APPs might enhance employment satisfaction and reduce burnout.


Assuntos
Esgotamento Profissional/epidemiologia , Esgotamento Profissional/psicologia , Inteligência Emocional , Pessoal de Saúde/psicologia , Neurocirurgia/psicologia , Inquéritos e Questionários , Adulto , Esgotamento Profissional/diagnóstico , Estudos Transversais , Feminino , Pessoal de Saúde/tendências , Humanos , Masculino , Pessoa de Meia-Idade , Neurocirurgia/tendências , Sistemas de Apoio Psicossocial , Estados Unidos/epidemiologia
15.
World Neurosurg ; 154: 1, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34237450

RESUMO

Microvascular decompression (MVD) surgery is a well-established, effective treatment option for trigeminal neuralgia1 and hemifacial spasm.2 In 1967, Janetta et al3 introduced the concept of MVD surgery and pioneered the Janetta technique in which Teflon felt implants are placed between the trigeminal nerve and offending vessel. Though many cases are successfully managed with Teflon interposition, alternative techniques have been developed with the objective to alleviate vascular compression symptoms indefinitely, including transposition using biological glue,4 vascular clips,5,6 and a variety of "sling" techniques.7 In Video 1, we demonstrate a fenestrated clip transposition technique in the treatment of trigeminal neuralgia. We present the case of a 72-year-old female who presented with classic trigeminal neuralgia pain along the V2 and V3 distributions. Magnetic resonance imaging revealed evident compression of the trigeminal nerve by the superior cerebellar artery (SCA). A retrosigmoid craniotomy was performed, and the vascular loop of the SCA was visualized compressing the root entry zone with significant indentation of the trigeminal nerve. Wide arachnoid dissection along the SCA was carried out in order to mobilize the SCA away from the nerve. A small slit was created in the undersurface of the tentorium, and then the SCA loop was transposed to the tentorium using a fenestrated aneurysm clip. The postoperative course was uneventful, and the patient had complete resolution of her facial pain at 6-month follow-up. This method is likely an effective and durable method of decompression for trigeminal neuralgia.


Assuntos
Cirurgia de Descompressão Microvascular/instrumentação , Cirurgia de Descompressão Microvascular/métodos , Instrumentos Cirúrgicos , Neuralgia do Trigêmeo/cirurgia , Idoso , Feminino , Humanos
16.
World Neurosurg ; 149: e714-e720, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33540094

RESUMO

BACKGROUND: Practice consolidation in healthcare has widespread consequences for providers and patients. Although many studies describe this phenomenon in various medical specialties, no such analysis has been performed in neurosurgery specifically. The goal of this study was to assess the trends in the size of U.S. neurosurgery practices over a 5-year period. METHODS: Neurosurgery practice characteristics were obtained from the Medicare Physician Compare database from March 2014 through October 2019 on the Centers for Medicare & Medicaid Services Website. Neurosurgeons were separated on the basis of their practice size. Group practice sizes ranged from solo practitioner practice to large multispecialty groups and health organizations. Eight groups were identified (1 or 2, 3-9, 10-24, 25-49, 50-99, 100-499, 500-999, and ≥1000 members). Additionally, neurosurgery practices were analyzed across the 4 U.S. geographical regions to understand changes in practice size and distribution. RESULTS: The percentage of neurosurgeons in smaller practices of 1 or 2 members decreased, from 20.09% to 13.05%; 3-9 members, from 17.79% to 9.41%; and 10-24 members, from 10.53% to 8.0%. The largest increase was seen in health organizations of 1000 members or more, with an increase from 9.85% to 22.84%. CONCLUSIONS: This study shows that over the past 5 years, a substantial trend toward increasing practice sizes has evolved. The effect of the differences in practice size should be examined to determine the large-scale impacts on patient care, payment models, and healthcare access, in addition to neurosurgeon compensation, and satisfaction.


Assuntos
Centers for Medicare and Medicaid Services, U.S./economia , Medicare/economia , Neurocirurgiões , Neurocirurgia/economia , Humanos , Procedimentos Neurocirúrgicos/educação , Médicos/economia , Estados Unidos
17.
Sci Rep ; 11(1): 3932, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594116

RESUMO

Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target in GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor-a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation. Additionally, we used a separate dataset containing 24 image-localized biopsies from 7 high-grade glioma patients to validate the model. Predictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n = 95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n = 72) compared to predictions with higher uncertainty (48% accuracy, n = 23), due largely to data interpolation (rather than extrapolation). On the separate validation set, our model achieved 78% accuracy amongst the sample predictions with lowest uncertainty. We present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making.


Assuntos
Genes erbB-1 , Glioblastoma/diagnóstico por imagem , Genômica por Imageamento , Aprendizado de Máquina , Modelagem Computacional Específica para o Paciente , Amplificação de Genes , Glioblastoma/genética , Humanos , Imageamento por Ressonância Magnética , Incerteza
18.
Oper Neurosurg (Hagerstown) ; 20(4): 397-405, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33432975

RESUMO

BACKGROUND: Trigeminal neuralgia (TN) refractory to medical management is often treated with microvascular decompression (MVD) involving the intracranial placement of Teflon. The placement of Teflon is an effective treatment, but does apply distributed pressure to the nerve and has been associated with pain recurrence. OBJECTIVE: To report the rate of postoperative pain recurrence in TN patients who underwent MVD surgery using a transposition technique with fibrin glue without Teflon. METHODS: Patients were eligible for our study if they were diagnosed with TN, did not have multiple sclerosis, and had an offending vessel that was identified and transposed with fibrin glue at our institution. All eligible patients were given a follow-up survey. We used a Kaplan-Meier (KM) model to estimate overall pain recurrence. RESULTS: A total of 102 patients met inclusion criteria, of which 85 (83%) responded to our survey. Overall, 76 (89.4%) participants responded as having no pain recurrence. Approximately 1-yr pain-free KM estimates were 94.1% (n = 83), 5-yr pain-free KM estimates were 94.1% (n = 53), and 10-yr pain-free KM estimates were 83.0% (n = 23). CONCLUSION: Treatment for TN with an MVD transposition technique using fibrin glue may avoid some cases of pain recurrence. The percentage of patients in our cohort who remained pain free at a maximum of 17 yr follow-up is on the high end of pain-free rates reported by MVD studies using Teflon. These results indicate that a transposition technique that emphasizes removing any compression near the trigeminal nerve root provides long-term pain-free rates for patients with TN.


Assuntos
Cirurgia de Descompressão Microvascular , Neuralgia do Trigêmeo , Humanos , Politetrafluoretileno , Resultado do Tratamento , Nervo Trigêmeo/cirurgia , Neuralgia do Trigêmeo/cirurgia
19.
J Neurosurg ; 135(3): 783-791, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339002

RESUMO

OBJECTIVE: Surgical site infection (SSI) is a rare but significant complication after vagus nerve stimulator (VNS) placement. Treatment options range from antibiotic therapy alone to hardware removal. The optimal therapeutic strategy remains open to debate. Therefore, the authors conducted this retrospective multicenter analysis to provide insight into the optimal management of VNS-related SSI (VNS-SSI). METHODS: Under institutional review board approval and utilizing an institutional database with 641 patients who had undergone 808 VNS-related placement surgeries and 31 patients who had undergone VNS-related hardware removal surgeries, the authors retrospectively analyzed VNS-SSI. RESULTS: Sixteen cases of VNS-SSI were identified; 12 of them had undergone the original VNS placement procedure at the authors' institutions. Thus, the incidence of VNS-SSI was calculated as 1.5%. The mean (± standard deviation) time from the most recent VNS-related surgeries to infection was 42 (± 27) days. Methicillin-sensitive staphylococcus was the usual causative bacteria (58%). Initial treatments included antibiotics with or without nonsurgical procedures (n = 6), nonremoval open surgeries for irrigation (n = 3), generator removal (n = 3), and total or near-total removal of hardware (n = 4). Although 2 patients were successfully treated with antibiotics alone or combined with generator removal, removal of both the generator and leads was eventually required in 14 patients. Mild swallowing difficulties and hoarseness occurred in 2 patients with eventual resolution. CONCLUSIONS: Removal of the VNS including electrode leads combined with antibiotic administration is the definitive treatment but has a risk of causing dysphagia. If the surgeon finds dense scarring around the vagus nerve, the prudent approach is to snip the electrode close to the nerve as opposed to attempting to unwind the lead completely.

20.
Neurol Neurochir Pol ; 54(5): 456-465, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32914406

RESUMO

BACKGROUND: Neuroanatomic locations of gliomas may influence clinical presentations, molecular profiles, and patients' prognoses. METHODS: We investigated our institutional cancer registry to include patients with glioma over a 10-year period. Statistical tests were used to compare demographic, genetic, and clinical characteristics among patients with gliomas in different locations. Survival analysis methods were then used to assess associations between location and overall survival in the full cohort, as well as in relevant subgroups. RESULTS: 182 gliomas were identified. Of the tumours confined to a single lobe, there were 51 frontal (28.0%), 50 temporal (27.5%), 22 parietal (12.1%), and seven occipital tumours (3.8%) identified. Tumours affecting the temporal lobe were associated with reduced overall survival when compared to all other tumours (11 months vs. 13 months, log-rank p = 0.0068). In subgroup analyses, this result was significant for males [HR (95%CI) 2.05 (1.30, 3.24), p = 0.002], but not for females [HR (95%CI) 1.12 (0.65, 1.93), p = 0.691]. Out of 82 cases tested for IDH-1, 10 were mutated (5.5%). IDH-1 mutation was present in six frontal, two temporal, one thalamic, and one multifocal tumour. Out of 21 cases tested for 1p19q deletions, 12 were co-deleted, nine of which were frontal lobe tumours. MGMT methylation was assessed in 45 cases; 7/14 frontal tumours and 6/13 temporal tumours were methylated. CONCLUSION: Our results support the hypothesis that the anatomical locations of gliomas influence patients' clinical courses. Temporal lobe tumours were associated with poorer survival, though this association appeared to be driven by these patients' more aggressive tumour profiles and higher risk baseline demographics. Independently, female patients who had temporal lobe tumours fared better than males. Molecular analysis was limited by the low prevalence of genetic testing in the study sample, highlighting the importance of capturing this information for all gliomas. IMPORTANCE OF THIS STUDY: The specific neuroanatomic location of tumours in the brain is thought to be predictive of treatment options and overall prognosis. Despite evidence for the clinical significance of this information, there is relatively little information available regarding the incidence and prevalence of tumours in the different anatomical regions of the brain. This study has more fully characterised tumour prevalence in different regions of the brain. Additionally, we have analysed how this information may affect tumours' molecular characteristics, treatment options offered to patients, and patients' overall survival. This information will be informative both in the clinical setting and in directing future research.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Feminino , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Masculino , Mutação , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...