Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 189: 114716, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735358

RESUMO

Several regulatory agencies continue to require animal feeding studies to approve new genetically modified crops despite such studies providing little value in the safety assessment. Feeding studies with maize grain containing event DP-915635-4 (DP915635), a new corn rootworm management trait, were conducted to fulfill that requirement. Diets fed to Crl:CD®(SD) rats for 90 days contained up to 50% ground maize grain from DP915635, non-transgenic control, or non-transgenic reference hybrids (P1197, 6158, and 6365). Ross 708 broilers received phase diets containing up to 67% maize grain from each source for 42 days. Growth performance was compared between animals fed DP915635 and control diets; rats were further evaluated for clinical and neurobehavioral measures, ophthalmology, clinical pathology, organ weights, and gross and microscopic pathology, whereas carcass parts and select organ yields were determined for broilers. Reference group inclusion assisted in determining natural variation influence on observed significant differences between DP915635 and control groups. DP915635 maize grain diet consumption did not affect any measure evaluated in either feeding study. Results demonstrated DP-915635-4 maize grain safety and nutritional equivalency when fed in nutritionally adequate diets, adding to the existing literature confirming the lack of significant effects of feeding grain from genetically modified plants.


Assuntos
Ração Animal , Galinhas , Plantas Geneticamente Modificadas , Zea mays , Animais , Zea mays/genética , Plantas Geneticamente Modificadas/genética , Ração Animal/análise , Masculino , Ratos , Feminino , Ratos Sprague-Dawley , Tamanho do Órgão/efeitos dos fármacos , Dieta , Peso Corporal/efeitos dos fármacos
2.
Food Chem Toxicol ; 181: 114106, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37852351

RESUMO

Previous work demonstrated the utility of using human-derived intestinal epithelial cell (IEC) lines cultured as polarized monolayers on Transwell® filters to differentiate between hazardous and non-hazardous proteins. The current study seeks to further resolve appropriate concentrations for evaluating proteins of unknown hazard potential using the IEC experimental platform and leverages these parameters for evaluating the potential toxicity of insecticidal proteins characteristic of those expressed in genetically modified (GM) agricultural biotechnology crops. To establish optimal test protein concentrations, effects of several known hazardous (C. perfringens epsilon toxin, Listeriolysin O, Phaseolus vulgaris erythroagglutinin, E. coli Shiga toxin 1, C. difficile Toxin B and wheat germ agglutinin) and non-hazardous (Ara-h2, ß-lactoglobulin, fibronectin and Rubisco) proteins on IEC barrier integrity and cell viability were evaluated at concentration ranges. Two insecticidal proteins (AfIP-1A and AfIP-1B) were evaluated for effects in the IEC assay, a seven-day insecticidal bioassay, and assessed in a high-dose 14-day acute oral toxicity study in mice. The results obtained from the human in vitro IEC assay were consistent with results obtained from an in vivo acute oral toxicity study, both demonstrating that the combination of AfIP-1A and AfIP-1B do not exhibit any identifiable harmful impacts on mammalian cells.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Humanos , Animais , Camundongos , Toxinas Bacterianas/metabolismo , Escherichia coli , Intestinos , Células Epiteliais , Mucosa Intestinal/metabolismo , Mamíferos
3.
GM Crops Food ; 12(1): 396-408, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34459369

RESUMO

Feeding studies were conducted with rats and broiler chickens to assess the safety and nutrition of maize grain containing event DP-Ø23211-2 (DP23211), a newly developed trait-pyramid product for corn rootworm management. Diets containing 50% ground maize grain from DP23211, non-transgenic control, or non-transgenic reference hybrids (P0928, P0993, and P1105) were fed to Crl:CD®(SD) rats for 90 days. Ross 708 broilers were fed phase diets containing up to 67% maize grain from each source for 42 days. Body weight, gain, and feed conversion were determined for comparisons between animals fed DP23211 and control diets in each study. Additional measures included clinical and neurobehavioral evaluations, ophthalmology, clinical pathology, organ weights, and gross and microscopic pathology for rats, and carcass parts and select organ yields for broilers. Reference groups were included to determine if any observed significant differences between DP23211 and control groups were likely due to natural variation. No diet-related effects on mortality or evaluation measures were observed between animal fed diets produced with DP23211 maize grain and animal fed diets produced with control maize grain. These studies show that maize grain containing event DP-Ø23211-2 is as safe and nutritious as non-transgenic maize grains when fed in nutritionally adequate diets. The results are consistent with previously published studies, providing further demonstration of the absence of hazards from edible-fraction consumption of genetically modified plants.


Assuntos
Galinhas , Zea mays , Ração Animal/análise , Animais , Grão Comestível , Plantas Geneticamente Modificadas , Ratos , Zea mays/genética
4.
J Agric Food Chem ; 67(26): 7466-7474, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31184886

RESUMO

The ZMM28 protein encoded by the zmm28 gene is endogenous to maize. DP202216 maize was genetically modified to increase and extend expression of the zmm28 gene relative to native zmm28 gene expression, resulting in plants with enhanced grain yield potential. Evaluation of the history of safe use (HOSU) is one component of the safety assessment framework for a newly expressed protein in a GM crop. The deduced amino acid sequence of the introduced ZMM28 protein in DP202216 maize is identical to the ZMM28 protein in nonmodified conventional maize. The ZMM28 protein has also been found in selected varieties of sweet corn kernels, and closely related proteins are found in other commonly consumed food crops. Concentrations of the ZMM28 protein in event DP202216 maize, conventional maize, and sweet corn are reported. This information supports, in part, the evaluation of HOSU, which can be leveraged in the safety assessment of the ZMM28 protein. Additional studies will be considered in the food and feed safety assessment of the DP202216 maize event.


Assuntos
Proteínas de Plantas/química , Plantas Geneticamente Modificadas/química , Zea mays/química , Sequência de Aminoácidos , Qualidade de Produtos para o Consumidor , Inocuidade dos Alimentos , Alimentos Geneticamente Modificados , Humanos , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência , Zea mays/genética , Zea mays/metabolismo
5.
Toxicol In Vitro ; 44: 85-93, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28652201

RESUMO

Relatively few proteins in nature produce adverse effects following oral exposure. Of those that do, effects are often observed in the gut, particularly on intestinal epithelial cells (IEC). Previous studies reported that addition of protein toxins to IEC lines disrupted monolayer integrity but innocuous dietary proteins did not. Studies presented here investigated the effects of innocuous (bovine serum albumin, ß-lactoglobulin, RuBisCO, fibronectin) or hazardous (phytohaemagglutinin-E, concanavalin A, wheat germ agglutinin, melittin) proteins that either were untreated or exposed to digestive enzymes prior to addition to Caco-2 human IEC line monolayers. At high concentrations intact fibronectin caused an increase in monolayer permeability but other innocuous proteins did not whether exposed to digestive enzymes or not. In contrast, all untreated hazardous proteins and those that were resistant to digestion (ex. wheat germ agglutinin) disrupted monolayer integrity. However, proteins sensitive to degradation by digestive enzymes (ex. melittin) did not adversely affect monolayers when exposed to these enzymes prior to addition to IEC line monolayers. These results indicate that in vitro exposure of proteins to digestive enzymes can assist in differentiating between innocuous and hazardous proteins as another component to consider in the overall weight of evidence approach in protein hazard assessment.


Assuntos
Células Epiteliais/efeitos dos fármacos , Pancreatina/farmacologia , Pepsina A/farmacologia , Proteínas/toxicidade , Células CACO-2 , Digestão , Trato Gastrointestinal/metabolismo , Humanos , Intestinos/citologia , Junções Íntimas/efeitos dos fármacos
7.
Food Chem Toxicol ; 92: 75-87, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27060235

RESUMO

Human intestinal epithelial cell lines (T84, Caco-2, and HCT-8) grown on permeable Transwell™ filters serve as models of the gastrointestinal barrier. In this study, this in vitro model system was evaluated for effectiveness at distinguishing between hazardous and non-hazardous proteins. Indicators of cytotoxicity (LDH release, MTT conversion), monolayer barrier integrity ([(3)H]-inulin flux, horseradish peroxidase flux, trans-epithelial electrical resistance [TEER]), and inflammation (IL-8, IL-6 release) were monitored following exposure to hazardous or non-hazardous proteins. The hazardous proteins examined include streptolysin O (from Streptococcus pyogenes), Clostridium difficile Toxins A and B, heat-labile toxin from enterotoxigenic Escherichia coli, listeriolysin O (from Listeria monocytogenes), melittin (from bee venom), and mastoparan (from wasp venom). Non-hazardous proteins included bovine and porcine serum albumin, bovine fibronectin, and ribulose bisphosphate carboxylase/oxygenase (RuBisco) from spinach. Food allergenic proteins bovine milk ß-lactoglobulin and peanut Ara h 2 were also tested as was the anti-nutritive food protein wheat germ agglutinin. Results demonstrated that this model system effectively distinguished between hazardous and non-hazardous proteins through combined analysis of multiple cells lines and assays. This experimental strategy may represent a useful adjunct to multi-component analysis of proteins with unknown hazard profiles.


Assuntos
Alérgenos/farmacologia , Toxinas Bacterianas/farmacologia , Proteínas Alimentares/farmacologia , Intestinos/patologia , Lectinas/farmacologia , Neoplasias Epiteliais e Glandulares/patologia , Peçonhas/farmacologia , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Humanos , Intestinos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...