Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 228: 105941, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901737

RESUMO

Tick-borne encephalitis virus (TBEV) is a tick-borne flavivirus that induces severe central nervous system disorders. It has recently raised concerns due to an expanding geographical range and increasing infection rates. Existing vaccines, though effective, face low coverage rates in numerous TBEV endemic regions. Our previous work demonstrated the immunogenicity and full protection afforded by a TBEV vaccine based on virus-like particles (VLPs) produced in Leishmania tarentolae cells in immunization studies in a mouse model. In the present study, we explored the impact of adjuvants (AddaS03™, Alhydrogel®+MPLA) and administration routes (subcutaneous, intramuscular) on the immune response. Adjuvanted groups exhibited significantly enhanced antibody responses, higher avidity, and more balanced Th1/Th2 response. IFN-γ responses depended on the adjuvant type, while antibody levels were influenced by both adjuvant and administration routes. The combination of Leishmania-derived TBEV VLPs with Alhydrogel® and MPLA via intramuscular administration emerged as a highly promising prophylactic vaccine candidate, eliciting a robust, balanced immune response with substantial neutralization potential.

2.
Microbiol Spectr ; 11(3): e0256422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199661

RESUMO

The emerging virus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2 virus), agent of COVID-19, appeared in December 2019 in Wuhan, China, and became a serious threat to global health and public safety. Many COVID-19 vaccines have been approved and licensed around the world. Most of the developed vaccines include S protein and induce an antibody-based immune response. Additionally, T-cell response to the SARS-CoV-2 antigens could be beneficial for combating the infection. The type of immune response is greatly dependent not only on the antigen, but also on adjuvants used in vaccine formulation. Here, we compared the effect of four different adjuvants (AddaS03, Alhydrogel/MPLA, Alhydrogel/ODN2395, Quil A) on the immunogenicity of a mixture of recombinant RBD and N SARS-CoV-2 proteins. We have analyzed the antibody and T-cell response specific to RBD and N proteins and assessed the impact of adjuvants on virus neutralization. Our results clearly indicated that Alhydrogel/MPLA and Alhydrogel/ODN2395 adjuvants elicited the higher titers of specific and cross-reactive antibodies to S protein variants from various SARS-CoV-2 and SARS-CoV-1 strains. Moreover, Alhydrogel/ODN2395 stimulated high cellular response to both antigens, as assessed by IFN-γ production. Importantly, sera collected from mice immunized with RBD/N cocktail in combination with these adjuvants exhibited neutralizing activity against the authentic SARS-CoV-2 virus as well as particles pseudotyped with S protein from various virus variants. The results from our study demonstrate the immunogenic potential of RBD and N antigens and point out the importance of adjuvants selection in vaccine formulation in order to enhance the immunological response. IMPORTANCE Although several COVID-19 vaccines have been approved worldwide, continuous emergence of new SARS-CoV-2 variants calls for new efficient vaccines against them, providing long-lasting immunity. As the immune response after vaccination is dependent not only on antigen used, but also on other vaccine components, e.g., adjuvants, the purpose of this work was to study the effect of different adjuvants on the immunogenicity of RBD/N SARS-CoV-2 cocktail proteins. In this work, it has been shown that immunization with both antigens plus the different adjuvants studied elicited higher Th1 and Th2 responses against RBD and N, which contributed to higher neutralization of the virus. The obtained results can be used for design of new vaccines, not only against SARS-CoV-2, but also against other important viral pathogens.


Assuntos
COVID-19 , Vacinas Virais , Animais , Camundongos , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Hidróxido de Alumínio , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunogenicidade da Vacina
3.
J Exp Bot ; 74(14): 3975-3986, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37076273

RESUMO

Regulation of gene expression is a complicated process based on the coordination of many different pathways, including epigenetic control of chromatin state, transcription, RNA processing, export of mature transcripts to the cytoplasm, and their translation into proteins. In recent years, with the development of high-throughput sequencing techniques, the importance of RNA modifications in gene expression has added another layer to this regulatory landscape. To date, >150 different types of RNA modifications have been found. Most RNA modifications, such as N6-methyladenosine (m6A) and pseudouridine (Ψ), were initially identified in highly abundant structural RNAs, such as rRNAs, tRNAs, and small nuclear RNAs (snRNAs). Current methods provide the opportunity to identify new types of modifications and to precisely localize them not only in highly expressed RNAs but also in mRNA and small RNA molecules. The presence of modified nucleotides in protein-coding transcripts can affect their stability, localization, and further steps of pre-mRNA maturation. Finally, it may affect the quality and quantity of protein synthesis. In plants, the epitranscriptomic field is still narrow, but the number of reports is growing rapidly. This review presents highlights and perspectives of plant epitranscriptomic modifications, focusing on various aspects of modifications of RNA polymerase II transcripts and their influence on RNA fate.


Assuntos
RNA Polimerase II , RNA , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA/química , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processamento Pós-Transcricional do RNA , Adenosina/metabolismo
4.
Antiviral Res ; 209: 105511, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581050

RESUMO

Tick-borne encephalitis virus (TBEV) is a major cause of neurological infections in many regions of central, eastern and northern Europe and northern Asia. In approximately 15% of cases, TBEV infections lead to the development of severe encephalitis or meningitis. The main route of TBEV transmission is tick bites; however, ingestion of dairy products from infected animals (goats, cattle and sheep) is also a frequent cause of the disease. Therefore, vaccination of livestock in virus endemic regions could also contribute to the decrease in TBEV infection among humans. Although few vaccines against TBEV based on inactivated viruses are available for humans, due to high costs, vaccination is not mandatory in most of the affected countries. Moreover, there is still no vaccine for veterinary use. Here, we present a characterization and immunogenicity study of a new potential TBEV vaccine based on virus-like particles (VLPs) produced in Leishmania tarentolae cells. VLPs, which mimic native viral particles but do not contain genetic material, show good immunogenic potential. For the first time, we showed that the protozoan L. tarentolae expression system can be successfully used for the production of TBEV virus-like particles with highly efficient production. We confirmed that TBEV recombinant structural proteins (prM/M and E) from VLPs are highly recognized by neutralizing antibodies in in vitro analyses. Therefore, VLPs in combination with AddaVax adjuvant were used in immunization studies in a mouse model. VLPs proved to be highly immunogenic and induced the production of high levels of neutralizing antibodies. In a challenge experiment, immunization with VLPs provided full protection from lethal TBE in mice. Thus, we suggest that Leishmania-derived VLPs may be a good candidate for a safe alternative human vaccine with high efficiency of production. Moreover, this potential vaccine candidate may constitute a low-cost candidate for veterinary use.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Leishmania , Vacinas Virais , Humanos , Animais , Camundongos , Ovinos , Bovinos , Anticorpos Antivirais , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/prevenção & controle , Anticorpos Neutralizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...