Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 10(10): 5182-5197, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31646040

RESUMO

In this paper, measurements of the optical properties (diffuse reflectance, total and collimated transmittance) of brain tissues in healthy rats and rats with C6-glioma were performed in the spectral range from 350 to 1800 nm. Using these measurements, characteristic tissue optical parameters, such as absorption coefficient, scattering coefficient, reduced scattering coefficient, and scattering anisotropy factor were reconstructed. It was obtained that the 10-day development of glioma led to increase of absorption coefficient, which was associated with the water content elevation in the tumor. However, further development of the tumor (formation of the necrotic core) led to decrease in the water content. The dependence of the scattering properties on the different stages of model glioma development was more complex. Light penetration depth into the healthy and tumor brain was evaluated.

2.
Biomed Opt Express ; 10(8): 4003-4017, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31452991

RESUMO

In this pilot study, we analyzed effects of transcranial photobiomodulation (tPBM, 1267 nm, 32 J/cm2) on clearance of beta-amyloid (Aß) from the mouse brain. The immunohistochemical and confocal data clearly demonstrate the significant reduction of deposition of Aß plaques in mice after tPBM vs. untreated animals. The behavior tests showed that tPBM improved the cognitive, memory and neurological status of mice with Alzheimer's disease (AD). Using of our original method based on optical coherence tomography (OCT) analysis of clearance of gold nanorods (GNRs) from the brain, we proposed possible mechanism underlying tPBM-stimulating effects on clearance of Aß via the lymphatic system of the brain and the neck. These results open breakthrough strategies for a non-pharmacological therapy of Alzheimer's disease and clearly demonstrate that tPBM might be a promising therapeutic target for preventing or delaying Alzheimer's disease.

3.
Front Physiol ; 7: 210, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27378933

RESUMO

In this study, we analyzed the time-depended scenario of stress response cascade preceding and accompanying brain hemorrhages in newborn rats using an interdisciplinary approach based on: a morphological analysis of brain tissues, coherent-domain optical technologies for visualization of the cerebral blood flow, monitoring of the cerebral oxygenation and the deformability of red blood cells (RBCs). Using a model of stress-induced brain hemorrhages (sound stress, 120 dB, 370 Hz), we studied changes in neonatal brain 2, 4, 6, 8 h after stress (the pre-hemorrhage, latent period) and 24 h after stress (the post-hemorrhage period). We found that latent period of brain hemorrhages is accompanied by gradual pathological changes in systemic, metabolic, and cellular levels of stress. The incidence of brain hemorrhages is characterized by a progression of these changes and the irreversible cell death in the brain areas involved in higher mental functions. These processes are realized via a time-depended reduction of cerebral venous blood flow and oxygenation that was accompanied by an increase in RBCs deformability. The significant depletion of the molecular layer of the prefrontal cortex and the pyramidal neurons, which are crucial for associative learning and attention, is developed as a consequence of homeostasis imbalance. Thus, stress-induced processes preceding and accompanying brain hemorrhages in neonatal period contribute to serious injuries of the brain blood circulation, cerebral metabolic activity and structural elements of cognitive function. These results are an informative platform for further studies of mechanisms underlying stress-induced brain hemorrhages during the first days of life that will improve the future generation's health.

4.
Biomed Opt Express ; 6(10): 4088-97, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26504656

RESUMO

Stress is a major factor for a risk of cerebrovascular catastrophes. Studying of mechanisms underlying stress-related brain-injures in neonates is crucial for development of strategy to prevent of neonatal stroke. Here, using a model of sound-stress-induced intracranial hemorrhages in newborn rats and optical methods, we found that cerebral veins are more sensitive to the deleterious effect of stress than arteries and microvessels. The development of venous insufficiency with decreased blood outflow from the brain accompanied by hypoxia, reduction of complexity of venous blood flow and high production of beta-arrestin-1 are possible mechanisms responsible for a risk of neonatal hemorrhagic stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...