Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(31): e2201662119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881804

RESUMO

Human shelterin is a six-subunit complex-composed of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-that binds telomeres, protects them from the DNA-damage response, and regulates the maintenance of telomeric DNA. Although high-resolution structures have been generated of the individual structured domains within shelterin, the architecture and stoichiometry of the full complex are currently unknown. Here, we report the purification of shelterin subcomplexes and reconstitution of the entire complex using full-length, recombinant subunits. By combining negative-stain electron microscopy (EM), cross-linking mass spectrometry (XLMS), AlphaFold modeling, mass photometry, and native mass spectrometry (MS), we obtain stoichiometries as well as domain-scale architectures of shelterin subcomplexes and determine that they feature extensive conformational heterogeneity. For POT1/TPP1 and POT1/TPP1/TIN2, we observe high variability in the positioning of the POT1 DNA-binding domain, the TPP1 oligonucleotide/oligosaccharide-binding (OB) fold, and the TIN2 TRFH domain with respect to the C-terminal domains of POT1. Truncation of unstructured linker regions in TIN2, TPP1, and POT1 did not reduce the conformational variability of the heterotrimer. Shelterin and TRF1-containing subcomplexes form fully dimeric stoichiometries, even in the absence of DNA substrates. Shelterin and its subcomplexes showed extensive conformational variability, regardless of the presence of DNA substrates. We conclude that shelterin adopts a multitude of conformations and argue that its unusual architectural variability is beneficial for its many functions at telomeres.


Assuntos
Complexo Shelterina , Humanos , Espectrometria de Massas , Microscopia Eletrônica , Domínios Proteicos , Complexo Shelterina/química
2.
Nat Struct Mol Biol ; 29(8): 813-819, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35578024

RESUMO

The CST-Polα/primase complex is essential for telomere maintenance and functions to counteract resection at double-strand breaks. We report a 4.6-Å resolution cryo-EM structure of human CST-Polα/primase, captured prior to catalysis in a recruitment state stabilized by chemical cross-linking. Our structure reveals an evolutionarily conserved interaction between the C-terminal domain of the catalytic POLA1 subunit and an N-terminal expansion in metazoan CTC1. Cross-linking mass spectrometry and negative-stain EM analysis provide insight into CST binding by the flexible POLA1 N-terminus. Finally, Coats plus syndrome disease mutations previously characterized to disrupt formation of the CST-Polα/primase complex map to protein-protein interfaces observed in the recruitment state. Together, our results shed light on the architecture and stoichiometry of the metazoan fill-in machinery.


Assuntos
DNA Primase , Proteínas de Ligação a Telômeros , Animais , Microscopia Crioeletrônica , DNA Primase/genética , DNA Primase/metabolismo , Humanos , Complexo Shelterina , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
3.
Mol Cell ; 82(11): 2021-2031.e5, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35447082

RESUMO

The androgen receptor (AR) is a nuclear receptor that governs gene expression programs required for prostate development and male phenotype maintenance. Advanced prostate cancers display AR hyperactivation and transcriptome expansion, in part, through AR amplification and interaction with oncoprotein cofactors. Despite its biological importance, how AR domains and cofactors cooperate to bind DNA has remained elusive. Using single-particle cryo-electron microscopy, we isolated three conformations of AR bound to DNA, showing that AR forms a non-obligate dimer, with the buried dimer interface utilized by ancestral steroid receptors repurposed to facilitate cooperative DNA binding. We identify novel allosteric surfaces which are compromised in androgen insensitivity syndrome and reinforced by AR's oncoprotein cofactor, ERG, and by DNA-binding motifs. Finally, we present evidence that this plastic dimer interface may have been adopted for transactivation at the expense of DNA binding. Our work highlights how fine-tuning AR's cooperative interactions translate to consequences in development and disease.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Microscopia Crioeletrônica , DNA/metabolismo , Dimerização , Humanos , Masculino , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Ativação Transcricional
4.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782132

RESUMO

Quality control requires discrimination between functional and aberrant species to selectively target aberrant substrates for destruction. Nuclear RNA quality control in Saccharomyces cerevisiae includes the TRAMP complex that marks RNA for decay via polyadenylation followed by helicase-dependent 3' to 5' degradation by the RNA exosome. Using reconstitution biochemistry, we show that polyadenylation and helicase activities of TRAMP cooperate with processive and distributive exoribonuclease activities of the nuclear RNA exosome to protect stable RNA from degradation while selectively targeting and degrading less stable RNA. Substrate discrimination is lost when the distributive exoribonuclease activity of Rrp6 is inactivated, leading to degradation of stable and unstable RNA species. These data support a proofreading mechanism in which deadenylation by Rrp6 competes with Mtr4-dependent degradation to protect stable RNA while selectively targeting and degrading unstable RNA.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Estabilidade de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Exossomos/genética , Exossomos/metabolismo , Poliadenilação , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
5.
Methods Mol Biol ; 2062: 417-425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31768988

RESUMO

The eukaryotic RNA exosome is a conserved and ubiquitous multiprotein complex that possesses multiple RNase activities and is involved in a diverse array of RNA degradation and processing events. While much of our current understanding of RNA exosome function has been elucidated using genetics and cell biology based studies of protein functions, in particular in S. cerevisiae, many important contributions in the field have been enabled through use of in vitro reconstituted complexes. Here, we present an overview of our approach to purify exosome components from recombinant sources and reconstitute them into functional complexes. Three chapters following this overview provide detailed protocols for reconstituting exosome complexes from S. cerevisiae, S. pombe, and H. sapiens. We additionally provide insight on some of the drawbacks of these methods and highlight several important discoveries that have been achieved using reconstituted complexes.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , RNA Fúngico/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Exorribonucleases/metabolismo , Humanos , Estabilidade de RNA/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Methods Mol Biol ; 2062: 427-448, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31768989

RESUMO

3' to 5' RNA degradation is primarily catalyzed by the RNA exosome subunits Dis3 and Rrp6 in the nucleus of Saccharomyces cerevisiae. These enzymes form a complex with the nine-subunit noncatalytic core (Exo9) to carry out their functions in vivo. Protein cofactors Rrp47, Mpp6, and the Mtr4 RNA helicase also assist the complex by modulating its activities and/or recruiting it to specific RNAs for processing or degradation. Here we present our preferred strategy for reconstituting RNA exosomes from S. cerevisiae using purified, recombinantly expressed components.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exorribonucleases/metabolismo , Proteínas Nucleares/metabolismo , Estabilidade de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo
7.
Cell ; 173(7): 1663-1677.e21, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29906447

RESUMO

The ribonucleolytic RNA exosome interacts with RNA helicases to degrade RNA. To understand how the 3' to 5' Mtr4 helicase engages RNA and the nuclear exosome, we reconstituted 14-subunit Mtr4-containing RNA exosomes from Saccharomyces cerevisiae, Schizosaccharomyces pombe, and human and show that they unwind structured substrates to promote degradation. We loaded a human exosome with an optimized DNA-RNA chimera that stalls MTR4 during unwinding and determined its structure to an overall resolution of 3.45 Å by cryoelectron microscopy (cryo-EM). The structure reveals an RNA-engaged helicase atop the non-catalytic core, with RNA captured within the central channel and DIS3 exoribonuclease active site. MPP6 tethers MTR4 to the exosome through contacts to the RecA domains of MTR4. EXOSC10 remains bound to the core, but its catalytic module and cofactor C1D are displaced by RNA-engaged MTR4. Competition for the exosome core may ensure that RNA is committed to degradation by DIS3 when engaged by MTR4.


Assuntos
DNA Helicases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA Helicases/metabolismo , RNA/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , DNA/genética , DNA/metabolismo , Exorribonucleases/química , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/química , Humanos , Processamento de Imagem Assistida por Computador , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , RNA/genética , RNA Helicases/química , Estabilidade de RNA , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Especificidade por Substrato
8.
Elife ; 62017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28742025

RESUMO

Nuclear RNA exosomes catalyze a range of RNA processing and decay activities that are coordinated in part by cofactors, including Mpp6, Rrp47, and the Mtr4 RNA helicase. Mpp6 interacts with the nine-subunit exosome core, while Rrp47 stabilizes the exoribonuclease Rrp6 and recruits Mtr4, but it is less clear if these cofactors work together. Using biochemistry with Saccharomyces cerevisiae proteins, we show that Rrp47 and Mpp6 stimulate exosome-mediated RNA decay, albeit with unique dependencies on elements within the nuclear exosome. Mpp6-exosomes can recruit Mtr4, while Mpp6 and Rrp47 each contribute to Mtr4-dependent RNA decay, with maximal Mtr4-dependent decay observed with both cofactors. The 3.3 Å structure of a twelve-subunit nuclear Mpp6 exosome bound to RNA shows the central region of Mpp6 bound to the exosome core, positioning its Mtr4 recruitment domain next to Rrp6 and the exosome central channel. Genetic analysis reveals interactions that are largely consistent with our model.


Assuntos
RNA Helicases DEAD-box/metabolismo , Exossomos/metabolismo , Estabilidade de RNA , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Cristalografia por Raios X , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
9.
Genes Dev ; 31(2): 88-100, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28202538

RESUMO

The eukaryotic RNA exosome is an essential and conserved protein complex that can degrade or process RNA substrates in the 3'-to-5' direction. Since its discovery nearly two decades ago, studies have focused on determining how the exosome, along with associated cofactors, achieves the demanding task of targeting particular RNAs for degradation and/or processing in both the nucleus and cytoplasm. In this review, we highlight recent advances that have illuminated roles for the RNA exosome and its cofactors in specific biological pathways, alongside studies that attempted to dissect these activities through structural and biochemical characterization of nuclear and cytoplasmic RNA exosome complexes.


Assuntos
Exossomos/metabolismo , Homeostase/genética , RNA/metabolismo , Aciltransferases/química , Aciltransferases/metabolismo , Animais , Domínio Catalítico , Exossomos/química , Humanos , Transporte de RNA , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo
10.
Mol Cell ; 64(4): 734-745, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27818140

RESUMO

The eukaryotic RNA exosome is an essential and conserved 3'-to-5' exoribonuclease complex that degrades or processes nearly every class of cellular RNA. The nuclear RNA exosome includes a 9-subunit non-catalytic core that binds Rrp44 (Dis3) and Rrp6 subunits to modulate their processive and distributive 3'-to-5' exoribonuclease activities, respectively. Here we utilize an engineered RNA with two 3' ends to obtain a crystal structure of an 11-subunit nuclear exosome bound to RNA at 3.1 Å. The structure reveals an extended RNA path to Rrp6 that penetrates into the non-catalytic core; contacts between the non-catalytic core and Rrp44, which inhibit exoribonuclease activity; and features of the Rrp44 exoribonuclease site that support its ability to degrade 3' phosphate RNA substrates. Using reconstituted exosome complexes, we show that 3' phosphate RNA is not a substrate for Rrp6 but is readily degraded by Rrp44 in the nuclear exosome.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/química , Subunidades Proteicas/metabolismo , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Sítios de Ligação , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/ultraestrutura , Expressão Gênica , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Clivagem do RNA , RNA Fúngico/química , RNA Fúngico/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Termodinâmica
11.
Nat Commun ; 6: 7896, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26224058

RESUMO

Dynamic remodelling of intersubunit bridge B2, a conserved RNA domain of the bacterial ribosome connecting helices 44 (h44) and 69 (H69) of the small and large subunit, respectively, impacts translation by controlling intersubunit rotation. Here we show that aminoglycosides chemically related to neomycin-paromomycin, ribostamycin and neamine-each bind to sites within h44 and H69 to perturb bridge B2 and affect subunit rotation. Neomycin and paromomycin, which only differ by their ring-I 6'-polar group, drive subunit rotation in opposite directions. This suggests that their distinct actions hinge on the 6'-substituent and the drug's net positive charge. By solving the crystal structure of the paromomycin-ribosome complex, we observe specific contacts between the apical tip of H69 and the 6'-hydroxyl on paromomycin from within the drug's canonical h44-binding site. These results indicate that aminoglycoside actions must be framed in the context of bridge B2 and their regulation of subunit rotation.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , RNA Bacteriano/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Menores de Bactérias/efeitos dos fármacos , Aminoglicosídeos/metabolismo , Antibacterianos/metabolismo , Sítios de Ligação , Escherichia coli , Proteínas de Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Framicetina/metabolismo , Framicetina/farmacologia , Neomicina/metabolismo , Neomicina/farmacologia , Paromomicina/metabolismo , Paromomicina/farmacologia , RNA Bacteriano/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Ribostamicina/metabolismo , Ribostamicina/farmacologia , Rotação
12.
Nucleic Acids Res ; 41(3): 1711-21, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23268446

RESUMO

Complex viruses that encode their own initiation proteins and subvert the host's elongation apparatus have provided valuable insights into DNA replication. Using purified bacteriophage SPP1 and Bacillus subtilis proteins, we have reconstituted a rolling circle replication system that recapitulates genetically defined protein requirements. Eleven proteins are required: phage-encoded helicase (G40P), helicase loader (G39P), origin binding protein (G38P) and G36P single-stranded DNA-binding protein (SSB); and host-encoded PolC and DnaE polymerases, processivity factor (ß(2)), clamp loader (τ-δ-δ') and primase (DnaG). This study revealed a new role for the SPP1 origin binding protein. In the presence of SSB, it is required for initiation on replication forks that lack origin sequences, mimicking the activity of the PriA replication restart protein in bacteria. The SPP1 replisome is supported by both host and viral SSBs, but phage SSB is unable to support B. subtilis replication, likely owing to its inability to stimulate the PolC holoenzyme in the B. subtilis context. Moreover, phage SSB inhibits host replication, defining a new mechanism by which bacterial replication could be regulated by a viral factor.


Assuntos
Fagos Bacilares/genética , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Replicação do DNA , Proteínas Virais/metabolismo , Proteínas de Transporte/metabolismo , DNA/metabolismo , DNA Helicases/metabolismo , DNA Polimerase III/metabolismo , DNA Primase/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...