Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Front Psychiatry ; 15: 1255370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585483

RESUMO

Introduction: Approximately one in six people will experience an episode of major depressive disorder (MDD) in their lifetime. Effective treatment is hindered by subjective clinical decision-making and a lack of objective prognostic biomarkers. Functional MRI (fMRI) could provide such an objective measure but the majority of MDD studies has focused on static approaches, disregarding the rapidly changing nature of the brain. In this study, we aim to predict depression severity changes at 3 and 6 months using dynamic fMRI features. Methods: For our research, we acquired a longitudinal dataset of 32 MDD patients with fMRI scans acquired at baseline and clinical follow-ups 3 and 6 months later. Several measures were derived from an emotion face-matching fMRI dataset: activity in brain regions, static and dynamic functional connectivity between functional brain networks (FBNs) and two measures from a wavelet coherence analysis approach. All fMRI features were evaluated independently, with and without demographic and clinical parameters. Patients were divided into two classes based on changes in depression severity at both follow-ups. Results: The number of coherence clusters (nCC) between FBNs, reflecting the total number of interactions (either synchronous, anti-synchronous or causal), resulted in the highest predictive performance. The nCC-based classifier achieved 87.5% and 77.4% accuracy for the 3- and 6-months change in severity, respectively. Furthermore, regression analyses supported the potential of nCC for predicting depression severity on a continuous scale. The posterior default mode network (DMN), dorsal attention network (DAN) and two visual networks were the most important networks in the optimal nCC models. Reduced nCC was associated with a poorer depression course, suggesting deficits in sustained attention to and coping with emotion-related faces. An ensemble of classifiers with demographic, clinical and lead coherence features, a measure of dynamic causality, resulted in a 3-months clinical outcome prediction accuracy of 81.2%. Discussion: The dynamic wavelet features demonstrated high accuracy in predicting individual depression severity change. Features describing brain dynamics could enhance understanding of depression and support clinical decision-making. Further studies are required to evaluate their robustness and replicability in larger cohorts.

2.
J Neuroimaging ; 33(3): 404-414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710075

RESUMO

BACKGROUND AND PURPOSE: The lack of a robust diagnostic biomarker makes understanding depression from a neurobiological standpoint an important goal, especially in the context of brain imaging. METHODS: In this study, we aim to create novel image-based features for objective diagnosis of depression. Resting-state network time series are used to investigate neurodynamics with the help of wavelet coherence and Granger causality (G-causality). Three new features are introduced: total wavelet coherence, wavelet lead coherence, and wavelet coherence blob analysis. The fourth feature, pair-wise conditional G-causality, is used to establish the causality between resting-state networks. We use the proposed features to classify depression in adult subjects. RESULTS: We obtained an accuracy of 86% in the wavelet lead coherence, 80% in Granger causality, and 86% in wavelet coherence blob analysis. Subjects with depression showed hyperconnectivity between the dorsal attention network and the auditory network as well as between the posterior default mode network and the dorsal attention network. Hypoconnectivity was found between the anterior default mode network and the auditory network as well as the right frontoparietal network and the lateral visual network. An abnormal co-activation pattern was found between cerebellum and the lateral motor network according to the wavelet coherence blob analysis. CONCLUSION: Based on abnormal functional dynamics between brain networks, we were able to identify subjects with depression with high accuracy. The findings of this study contribute to the understanding of the impaired emotional and attention processing associated with depression, as well as decreased motor activity.


Assuntos
Mapeamento Encefálico , Depressão , Adulto , Humanos , Depressão/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Emoções , Rede Nervosa/diagnóstico por imagem
3.
J Neuroimaging ; 32(4): 582-595, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35598083

RESUMO

Objective diagnosis and prognosis in major depressive disorder (MDD) remains a challenge due to the absence of biomarkers based on physiological parameters or medical tests. Numerous studies have been conducted to identify functional magnetic resonance imaging-based biomarkers of depression that either objectively differentiate patients with depression from healthy subjects, predict personalized treatment outcome, or characterize biological subtypes of depression. While there are some findings of consistent functional biomarkers, there is still lack of robust data acquisition and analysis methodology. According to current findings, primarily, the anterior cingulate cortex, prefrontal cortex, and default mode network play a crucial role in MDD. Yet, there are also less consistent results and the involvement of other regions or networks remains ambiguous. We further discuss image acquisition, processing, and analysis limitations that might underlie these inconsistencies. Finally, the current review aims to address and discuss possible remedies and future opportunities that could improve the search for consistent functional imaging biomarkers of depression. Novel acquisition techniques, such as multiband and multiecho imaging, and neural network-based cleaning approaches can enhance the signal quality in limbic and frontal regions. More comprehensive analyses, such as directed or dynamic functional features or the identification of biological depression subtypes, can improve objective diagnosis or treatment outcome prediction and mitigate the heterogeneity of MDD. Overall, these improvements in functional MRI imaging techniques, processing, and analysis could advance the search for biomarkers and ultimately aid patients with MDD and their treatment course.


Assuntos
Transtorno Depressivo Maior , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Transtorno Depressivo Maior/diagnóstico por imagem , Giro do Cíngulo , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Córtex Pré-Frontal
4.
Front Cardiovasc Med ; 8: 787246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869698

RESUMO

Background: Machine learning models have been developed for numerous medical prognostic purposes. These models are commonly developed using data from single centers or regional registries. Including data from multiple centers improves robustness and accuracy of prognostic models. However, data sharing between multiple centers is complex, mainly because of regulations and patient privacy issues. Objective: We aim to overcome data sharing impediments by using distributed ML and local learning followed by model integration. We applied these techniques to develop 1-year TAVI mortality estimation models with data from two centers without sharing any data. Methods: A distributed ML technique and local learning followed by model integration was used to develop models to predict 1-year mortality after TAVI. We included two populations with 1,160 (Center A) and 631 (Center B) patients. Five traditional ML algorithms were implemented. The results were compared to models created individually on each center. Results: The combined learning techniques outperformed the mono-center models. For center A, the combined local XGBoost achieved an AUC of 0.67 (compared to a mono-center AUC of 0.65) and, for center B, a distributed neural network achieved an AUC of 0.68 (compared to a mono-center AUC of 0.64). Conclusion: This study shows that distributed ML and combined local models techniques, can overcome data sharing limitations and result in more accurate models for TAVI mortality estimation. We have shown improved prognostic accuracy for both centers and can also be used as an alternative to overcome the problem of limited amounts of data when creating prognostic models.

5.
BMC Res Notes ; 14(1): 329, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446098

RESUMO

OBJECTIVE: Parkinson's disease is a common, age-related, neurodegenerative disease, affecting gait and other motor functions. Technological developments in consumer imaging are starting to provide high-quality, affordable tools for home-based diagnosis and monitoring. This pilot study aims to investigate whether a consumer depth camera can capture changes in gait features of Parkinson's patients. The dataset consisted of 19 patients (tested in both a practically defined OFF phase and ON phase) and 8 controls, who performed the "Timed-Up-and-Go" test multiple times while being recorded with the Microsoft Kinect V2 sensor. Camera-derived features were step length, average walking speed and mediolateral sway. Motor signs were assessed clinically using the Movement Disorder Society Unified Parkinson's Disease Rating Scale. RESULTS: We found significant group differences between patients and controls for step length and average walking speed, showing the ability to detect Parkinson's features. However, there were no differences between the ON and OFF medication state, so further developments are needed to allow for detection of small intra-individual changes in symptom severity.


Assuntos
Transtornos Neurológicos da Marcha , Doenças Neurodegenerativas , Doença de Parkinson , Marcha , Humanos , Doença de Parkinson/diagnóstico , Projetos Piloto , Velocidade de Caminhada
6.
J Cardiovasc Dev Dis ; 8(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199892

RESUMO

Current prognostic risk scores for transcatheter aortic valve implantation (TAVI) do not benefit yet from modern machine learning techniques, which can improve risk stratification of one-year mortality of patients before TAVI. Despite the advancement of machine learning in healthcare, data sharing regulations are very strict and typically prevent exchanging patient data, without the involvement of ethical committees. A very robust validation approach, including 1300 and 631 patients per center, was performed to validate a machine learning model of one center at the other external center with their data, in a mutual fashion. This was achieved without any data exchange but solely by exchanging the models and the data processing pipelines. A dedicated exchange protocol was designed to evaluate and quantify the model's robustness on the data of the external center. Models developed with the larger dataset offered similar or higher prediction accuracy on the external validation. Logistic regression, random forest and CatBoost lead to areas under curve of the ROC of 0.65, 0.67 and 0.65 for the internal validation and of 0.62, 0.66, 0.68 for the external validation, respectively. We propose a scalable exchange protocol which can be further extended on other TAVI centers, but more generally to any other clinical scenario, that could benefit from this validation approach.

7.
Neuroimage ; 238: 118244, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34116148

RESUMO

A variety of strategies are used to combine multi-echo functional magnetic resonance imaging (fMRI) data, yet recent literature lacks a systematic comparison of the available options. Here we compare six different approaches derived from multi-echo data and evaluate their influences on BOLD sensitivity for offline and in particular real-time use cases: a single-echo time series (based on Echo 2), the real-time T2*-mapped time series (T2*FIT) and four combined time series (T2*-weighted, tSNR-weighted, TE-weighted, and a new combination scheme termed T2*FIT-weighted). We compare the influences of these six multi-echo derived time series on BOLD sensitivity using a healthy participant dataset (N = 28) with four task-based fMRI runs and two resting state runs. We show that the T2*FIT-weighted combination yields the largest increase in temporal signal-to-noise ratio across task and resting state runs. We demonstrate additionally for all tasks that the T2*FIT time series consistently yields the largest offline effect size measures and real-time region-of-interest based functional contrasts and temporal contrast-to-noise ratios. These improvements show the promising utility of multi-echo fMRI for studies employing real-time paradigms, while further work is advised to mitigate the decreased tSNR of the T2*FIT time series. We recommend the use and continued exploration of T2*FIT for offline task-based and real-time region-based fMRI analysis. Supporting information includes: a data repository (https://dataverse.nl/dataverse/rt-me-fmri), an interactive web-based application to explore the data (https://rt-me-fmri.herokuapp.com/), and further materials and code for reproducibility (https://github.com/jsheunis/rt-me-fMRI).


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Emoções/fisiologia , Humanos , Imageamento por Ressonância Magnética , Neurorretroalimentação , Reprodutibilidade dos Testes
8.
PLoS One ; 16(4): e0250222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33861794

RESUMO

Accelerated cognitive ageing (ACA) is an ageing co-morbidity in epilepsy that is diagnosed through the observation of an evident IQ decline of more than 1 standard deviation (15 points) around the age of 50 years old. To understand the mechanism of action of this pathology, we assessed brain dynamics with the use of resting-state fMRI data. In this paper, we present novel and promising methods to extract brain dynamics between large-scale resting-state networks: the emulative power, wavelet coherence, and granger causality between the networks were extracted in two resting-state sessions of 24 participants (10 ACA, 14 controls). We also calculated the widely used static functional connectivity to compare the methods. To find the best biomarkers of ACA, and have a better understanding of this epilepsy co-morbidity we compared the aforementioned between-network neurodynamics using classifiers and known machine learning algorithms; and assessed their performance. Results show that features based on the evolutionary game theory on networks approach, the emulative powers, are the best descriptors of the co-morbidity, using dynamics associated with the default mode and dorsal attention networks. With these dynamic markers, linear discriminant analysis could identify ACA patients at 82.9% accuracy. Using wavelet coherence features with decision-tree algorithm, and static functional connectivity features with support vector machine, ACA could be identified at 77.1% and 77.9% accuracy respectively. Granger causality fell short of being a relevant biomarker with best classifiers having an average accuracy of 67.9%. Combining the features based on the game theory, wavelet coherence, Granger-causality, and static functional connectivity- approaches increased the classification performance up to 90.0% average accuracy using support vector machine with a peak accuracy of 95.8%. The dynamics of the networks that lead to the best classifier performances are known to be challenged in elderly. Since our groups were age-matched, the results are in line with the idea of ACA patients having an accelerated cognitive decline. This classification pipeline is promising and could help to diagnose other neuropsychiatric disorders, and contribute to the field of psychoradiology.


Assuntos
Envelhecimento Cognitivo/fisiologia , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Idoso , Envelhecimento/fisiologia , Algoritmos , Biomarcadores/análise , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Causalidade , Cognição/fisiologia , Análise Discriminante , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Descanso/fisiologia , Máquina de Vetores de Suporte
9.
Biomed Eng Online ; 20(1): 6, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413426

RESUMO

BACKGROUND: Minimally invasive spine surgery is dependent on accurate navigation. Computer-assisted navigation is increasingly used in minimally invasive surgery (MIS), but current solutions require the use of reference markers in the surgical field for both patient and instruments tracking. PURPOSE: To improve reliability and facilitate clinical workflow, this study proposes a new marker-free tracking framework based on skin feature recognition. METHODS: Maximally Stable Extremal Regions (MSER) and Speeded Up Robust Feature (SURF) algorithms are applied for skin feature detection. The proposed tracking framework is based on a multi-camera setup for obtaining multi-view acquisitions of the surgical area. Features can then be accurately detected using MSER and SURF and afterward localized by triangulation. The triangulation error is used for assessing the localization quality in 3D. RESULTS: The framework was tested on a cadaver dataset and in eight clinical cases. The detected features for the entire patient datasets were found to have an overall triangulation error of 0.207 mm for MSER and 0.204 mm for SURF. The localization accuracy was compared to a system with conventional markers, serving as a ground truth. An average accuracy of 0.627 and 0.622 mm was achieved for MSER and SURF, respectively. CONCLUSIONS: This study demonstrates that skin feature localization for patient tracking in a surgical setting is feasible. The technology shows promising results in terms of detected features and localization accuracy. In the future, the framework may be further improved by exploiting extended feature processing using modern optical imaging techniques for clinical applications where patient tracking is crucial.


Assuntos
Procedimentos Cirúrgicos Minimamente Invasivos , Pele , Coluna Vertebral/cirurgia , Cirurgia Assistida por Computador
10.
Sensors (Basel) ; 20(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291409

RESUMO

The primary treatment for malignant brain tumors is surgical resection. While gross total resection improves the prognosis, a supratotal resection may result in neurological deficits. On the other hand, accurate intraoperative identification of the tumor boundaries may be very difficult, resulting in subtotal resections. Histological examination of biopsies can be used repeatedly to help achieve gross total resection but this is not practically feasible due to the turn-around time of the tissue analysis. Therefore, intraoperative techniques to recognize tissue types are investigated to expedite the clinical workflow for tumor resection and improve outcome by aiding in the identification and removal of the malignant lesion. Hyperspectral imaging (HSI) is an optical imaging technique with the power of extracting additional information from the imaged tissue. Because HSI images cannot be visually assessed by human observers, we instead exploit artificial intelligence techniques and leverage a Convolutional Neural Network (CNN) to investigate the potential of HSI in twelve in vivo specimens. The proposed framework consists of a 3D-2D hybrid CNN-based approach to create a joint extraction of spectral and spatial information from hyperspectral images. A comparison study was conducted exploiting a 2D CNN, a 1D DNN and two conventional classification methods (SVM, and the SVM classifier combined with the 3D-2D hybrid CNN) to validate the proposed network. An overall accuracy of 80% was found when tumor, healthy tissue and blood vessels were classified, clearly outperforming the state-of-the-art approaches. These results can serve as a basis for brain tumor classification using HSI, and may open future avenues for image-guided neurosurgical applications.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Inteligência Artificial , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Humanos , Imageamento Hiperespectral , Redes Neurais de Computação
11.
Comput Biol Med ; 127: 104055, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33157484

RESUMO

Several studies claim that listening to Mozart music affects cognition and can be used to treat neurological conditions like epilepsy. Research into this Mozart effect has not addressed how dynamic interactions between brain networks, i.e. effective connectivity, are affected. The Granger-causality analysis is often used to infer effective connectivity. First, we investigate if a new method, Bayesian topology identification, can be used as an alternative. Both methods are evaluated on simulation data, where the Bayesian method outperforms the Granger-causality analysis in the inference of connectivity graphs of dynamic networks, especially for short data lengths. In the second part, the Bayesian method is extended to enable the inference of changes in effective connectivity between groups of subjects. Next, we apply both methods to fMRI scans of 16 healthy subjects, who were scanned before and after the exposure to Mozart's sonata K448 at least 2 hours a day for 7 days. Here, we investigate if the effective connectivity of the subjects significantly changed after listening to Mozart music. The Bayesian method detected changes in effective connectivity between networks related to cognitive processing and control in the connection from the central executive to the superior sensori-motor network, in the connection from the posterior default mode to the fronto-parietal right network, and in the connection from the anterior default mode to the dorsal attention network. This last connection was only detected in a subgroup of subjects with a longer listening duration. Only in this last connection, an effect was found by the Granger-causality analysis.


Assuntos
Encéfalo , Música , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética
12.
Sensors (Basel) ; 20(13)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610555

RESUMO

Surgical navigation systems are increasingly used for complex spine procedures to avoid neurovascular injuries and minimize the risk for reoperations. Accurate patient tracking is one of the prerequisites for optimal motion compensation and navigation. Most current optical tracking systems use dynamic reference frames (DRFs) attached to the spine, for patient movement tracking. However, the spine itself is subject to intrinsic movements which can impact the accuracy of the navigation system. In this study, we aimed to detect the actual patient spine features in different image views captured by optical cameras, in an augmented reality surgical navigation (ARSN) system. Using optical images from open spinal surgery cases, acquired by two gray-scale cameras, spinal landmarks were identified and matched in different camera views. A computer vision framework was created for preprocessing of the spine images, detecting and matching local invariant image regions. We compared four feature detection algorithms, Speeded Up Robust Feature (SURF), Maximal Stable Extremal Region (MSER), Features from Accelerated Segment Test (FAST), and Oriented FAST and Rotated BRIEF (ORB) to elucidate the best approach. The framework was validated in 23 patients and the 3D triangulation error of the matched features was < 0 . 5 mm. Thus, the findings indicate that spine feature detection can be used for accurate tracking in navigated surgery.


Assuntos
Realidade Aumentada , Imagem Óptica , Coluna Vertebral/diagnóstico por imagem , Cirurgia Assistida por Computador , Sistemas de Navegação Cirúrgica , Algoritmos , Humanos , Imageamento Tridimensional , Imagens de Fantasmas , Coluna Vertebral/cirurgia
13.
Hum Brain Mapp ; 41(12): 3439-3467, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32333624

RESUMO

Neurofeedback training using real-time functional magnetic resonance imaging (rtfMRI-NF) allows subjects voluntary control of localised and distributed brain activity. It has sparked increased interest as a promising non-invasive treatment option in neuropsychiatric and neurocognitive disorders, although its efficacy and clinical significance are yet to be determined. In this work, we present the first extensive review of acquisition, processing and quality control methods available to improve the quality of the neurofeedback signal. Furthermore, we investigate the state of denoising and quality control practices in 128 recently published rtfMRI-NF studies. We found: (a) that less than a third of the studies reported implementing standard real-time fMRI denoising steps, (b) significant room for improvement with regards to methods reporting and (c) the need for methodological studies quantifying and comparing the contribution of denoising steps to the neurofeedback signal quality. Advances in rtfMRI-NF research depend on reproducibility of methods and results. Notably, a systematic effort is needed to build up evidence that disentangles the various mechanisms influencing neurofeedback effects. To this end, we recommend that future rtfMRI-NF studies: (a) report implementation of a set of standard real-time fMRI denoising steps according to a proposed COBIDAS-style checklist (https://osf.io/kjwhf/), (b) ensure the quality of the neurofeedback signal by calculating and reporting community-informed quality metrics and applying offline control checks and (c) strive to adopt transparent principles in the form of methods and data sharing and support of open-source rtfMRI-NF software. Code and data for reproducibility, as well as an interactive environment to explore the study data, can be accessed at https://github.com/jsheunis/quality-and-denoising-in-rtfmri-nf.


Assuntos
Neuroimagem Funcional , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Neurorretroalimentação , Controle de Qualidade , Neuroimagem Funcional/métodos , Neuroimagem Funcional/normas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Neurorretroalimentação/métodos
14.
J Med Imaging (Bellingham) ; 6(2): 027501, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31037247

RESUMO

The availability of massive amounts of data in histopathological whole-slide images (WSIs) has enabled the application of deep learning models and especially convolutional neural networks (CNNs), which have shown a high potential for improvement in cancer diagnosis. However, storage and transmission of large amounts of data such as gigapixel histopathological WSIs are challenging. Exploiting lossy compression algorithms for medical images is controversial but, as long as the clinical diagnosis is not affected, is acceptable. We study the impact of JPEG 2000 compression on our proposed CNN-based algorithm, which has produced performance comparable to that of pathologists and which was ranked second place in the CAMELYON17 challenge. Detecting tumor metastases in hematoxylin and eosin-stained tissue sections of breast lymph nodes is evaluated and compared with the pathologists' diagnoses in three different experimental setups. Our experiments show that the CNN model is robust against compression ratios up to 24:1 when it is trained on uncompressed high-quality images. We demonstrate that a model trained on lower quality images-i.e., lossy compressed images-depicts a classification performance that is significantly improved for the corresponding compression ratio. Moreover, it is also observed that the model performs equally well on all higher-quality images. These properties will help to design cloud-based computer-aided diagnosis (CAD) systems, e.g., telemedicine that employ deep CNN models that are more robust to image quality variations due to compression required to address data storage and transmission constraints. However, the results presented are specific to the CAD system and application described, and further work is needed to examine whether they generalize to other systems and applications.

15.
IEEE Trans Med Imaging ; 38(2): 550-560, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716025

RESUMO

Automated detection of cancer metastases in lymph nodes has the potential to improve the assessment of prognosis for patients. To enable fair comparison between the algorithms for this purpose, we set up the CAMELYON17 challenge in conjunction with the IEEE International Symposium on Biomedical Imaging 2017 Conference in Melbourne. Over 300 participants registered on the challenge website, of which 23 teams submitted a total of 37 algorithms before the initial deadline. Participants were provided with 899 whole-slide images (WSIs) for developing their algorithms. The developed algorithms were evaluated based on the test set encompassing 100 patients and 500 WSIs. The evaluation metric used was a quadratic weighted Cohen's kappa. We discuss the algorithmic details of the 10 best pre-conference and two post-conference submissions. All these participants used convolutional neural networks in combination with pre- and postprocessing steps. Algorithms differed mostly in neural network architecture, training strategy, and pre- and postprocessing methodology. Overall, the kappa metric ranged from 0.89 to -0.13 across all submissions. The best results were obtained with pre-trained architectures such as ResNet. Confusion matrix analysis revealed that all participants struggled with reliably identifying isolated tumor cells, the smallest type of metastasis, with detection rates below 40%. Qualitative inspection of the results of the top participants showed categories of false positives, such as nerves or contamination, which could be targeted for further optimization. Last, we show that simple combinations of the top algorithms result in higher kappa metric values than any algorithm individually, with 0.93 for the best combination.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Metástase Linfática/diagnóstico por imagem , Linfonodo Sentinela/diagnóstico por imagem , Algoritmos , Neoplasias da Mama/patologia , Feminino , Técnicas Histológicas , Humanos , Metástase Linfática/patologia , Linfonodo Sentinela/patologia
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 3909-3914, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946727

RESUMO

Surgical navigation systems can enhance surgeon vision and form a reliable image-guided tool for complex interventions as spinal surgery. The main prerequisite is successful patient tracking which implies optimal motion compensation. Nowadays, optical tracking systems can satisfy the need of detecting patient position during surgery, allowing navigation without the risk of damaging neurovascular structures. However, the spine is subject to vertebrae movements which can impact the accuracy of the system. The aim of this paper is to investigate the feasibility of a novel approach for offering a direct relationship to movements of the spinal vertebra during surgery. To this end, we detect and track patient spine features between different image views, captured by several optical cameras, for vertebrae rotation and displacement reconstruction. We analyze patient images acquired in a real surgical scenario by two gray-scale cameras, embedded in the flat-panel detector of the C-arm. Spine segmentation is performed and anatomical landmarks are designed and tracked between different views, while experimenting with several feature detection algorithms (e.g. SURF, MSER, etc.). The 3D positions for the matched features are reconstructed and the triangulation errors are computed for an accuracy assessment. The analysis of the triangulation accuracy reveals a mean error of 0.38 mm, which demonstrates the feasibility of spine tracking and strengthens the clinical application of optical imaging for spinal navigation.


Assuntos
Imageamento Tridimensional , Procedimentos Neurocirúrgicos , Coluna Vertebral/cirurgia , Cirurgia Assistida por Computador , Algoritmos , Humanos
17.
J Neurosurg ; : 1-8, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30497177

RESUMO

OBJECTIVEThe aim of this study was to gain insight into the influence of the pretreatment growth rate on the volumetric tumor response and tumor control rates after Gamma Knife radiosurgery (GKRS) for incidental vestibular schwannoma (VS).METHODSAll patients treated with GKRS at the Gamma Knife Center, ETZ Hospital, who exhibited a confirmed radiological progression of their VS after an initial observation period were included. Pre- and posttreatment MRI scans were volumetrically evaluated, and the volume doubling times (VDTs) prior to treatment were calculated. Posttreatment volumes were used to create an objective mathematical failure definition: 2 consecutive significant increases in tumor volume among 3 consecutive follow-up MRI scans. Spearman correlation, Kaplan-Meier survival analysis, and Cox proportional hazards regression analysis were used to determine the influence of the VDT on the volumetric treatment response.RESULTSThe resulting patient cohort contained 311 patients in whom the VDT was calculated. This cohort had a median follow-up time of 60 months after GKRS. Of these 311 patients, 35 experienced loss of tumor control after GKRS. The pretreatment growth rate and the relative volume changes, calculated at 6 months and 1, 2, and 3 years following treatment, showed no statistically significant correlation. Kaplan-Meier analysis revealed that slow-growing tumors, with a VDT equal to or longer than the median VDT of 15 months, had calculated 5- and 10-year control rates of 97.3% and 86.0%, respectively, whereas fast-growing tumors, with a VDT less than the median growth rate, had control rates of 85.5% and 67.6%, respectively (log-rank, p = 0.001). The influence of the VDT on tumor control was also determined by employing the Cox regression analysis. The resulting model presented a significant (p = 0.045) effect of the VDT on the hazard rates of loss of tumor control.CONCLUSIONSBy employing a unique, large database with long follow-up times, the authors were able to accurately investigate the influence of the pretreatment VS growth rate on the volumetric GKRS treatment response. The authors have found a predictive model that illustrates the negative influence of the pretreatment VS growth rate on the efficacy of radiosurgery treatment. The resulting tumor control rates confirm the high efficacy of GKRS for slow-growing VS. However, fast-growing tumors showed significantly lower control rates. For these cases, different treatment strategies may be considered.

18.
Int J Comput Assist Radiol Surg ; 13(9): 1321-1333, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29855770

RESUMO

PURPOSE: During needle interventions, successful automated detection of the needle immediately after insertion is necessary to allow the physician identify and correct any misalignment of the needle and the target at early stages, which reduces needle passes and improves health outcomes. METHODS: We present a novel approach to localize partially inserted needles in 3D ultrasound volume with high precision using convolutional neural networks. We propose two methods based on patch classification and semantic segmentation of the needle from orthogonal 2D cross-sections extracted from the volume. For patch classification, each voxel is classified from locally extracted raw data of three orthogonal planes centered on it. We propose a bootstrap resampling approach to enhance the training in our highly imbalanced data. For semantic segmentation, parts of a needle are detected in cross-sections perpendicular to the lateral and elevational axes. We propose to exploit the structural information in the data with a novel thick-slice processing approach for efficient modeling of the context. RESULTS: Our introduced methods successfully detect 17 and 22 G needles with a single trained network, showing a robust generalized approach. Extensive ex-vivo evaluations on datasets of chicken breast and porcine leg show 80 and 84% F1-scores, respectively. Furthermore, very short needles are detected with tip localization errors of less than 0.7 mm for lengths of only 5 and 10 mm at 0.2 and 0.36 mm voxel sizes, respectively. CONCLUSION: Our method is able to accurately detect even very short needles, ensuring that the needle and its tip are maximally visible in the visualized plane during the entire intervention, thereby eliminating the need for advanced bi-manual coordination of the needle and transducer.


Assuntos
Imageamento Tridimensional/métodos , Músculo Esquelético/diagnóstico por imagem , Agulhas , Redes Neurais de Computação , Imagens de Fantasmas , Semântica , Animais , Galinhas , Modelos Animais , Suínos , Transdutores
19.
Comput Med Imaging Graph ; 67: 9-20, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29684663

RESUMO

The incidence of Barrett cancer is increasing rapidly and current screening protocols often miss the disease at an early, treatable stage. Volumetric Laser Endomicroscopy (VLE) is a promising new tool for finding this type of cancer early, capturing a full circumferential scan of Barrett's Esophagus (BE), up to 3-mm depth. However, the interpretation of these VLE scans can be complicated, due to the large amount of cross-sectional images and the subtle grayscale variations. Therefore, algorithms for automated analysis of VLE data can offer a valuable contribution to its overall interpretation. In this study, we broadly investigate the potential of Computer-Aided Detection (CADe) for the identification of early Barrett's cancer using VLE. We employ a histopathologically validated set of ex-vivo VLE images for evaluating and comparing a considerable set of widely-used image features and machine learning algorithms. In addition, we show that incorporating clinical knowledge in feature design, leads to a superior classification performance and additional benefits, such as low complexity and fast computation time. Furthermore, we identify an optimal tissue depth for classification of 0.5-1.0 mm, and propose an extension to the evaluated features that exploits this phenomenon, improving their predictive properties for cancer detection in VLE data. Finally, we compare the performance of the CADe methods with the classification accuracy of two VLE experts. With a maximum Area Under the Curve (AUC) in the range of 0.90-0.93 for the evaluated features and machine learning methods versus an AUC of 0.81 for the medical experts, our experiments show that computer-aided methods can achieve a considerably better performance than trained human observers in the analysis of VLE data.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Algoritmos , Esôfago de Barrett/diagnóstico por imagem , Esôfago de Barrett/patologia , Diagnóstico por Computador , Detecção Precoce de Câncer/métodos , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/patologia , Lesões Pré-Cancerosas/diagnóstico por imagem , Lesões Pré-Cancerosas/patologia , Tomografia de Coerência Óptica , Benchmarking , Esofagoscopia , Humanos , Processamento de Imagem Assistida por Computador
20.
Brain Behav ; 8(2): e00878, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29484255

RESUMO

Introduction: Autism spectrum disorder (ASD) is mainly characterized by functional and communication impairments as well as restrictive and repetitive behavior. The leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, which can be assessed using functional magnetic resonance imaging (fMRI). Even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic, or resting-state, connectivity. Global default connectivity in individuals with autism versus controls is not well characterized, especially for a high-functioning young population. The aim of this study is to test whether high-functioning adolescents with ASD (HFA) have an abnormal resting-state functional connectivity. Materials and Methods: We performed spatial and temporal analyses on resting-state networks (RSNs) in 13 HFA adolescents and 13 IQ- and age-matched controls. For the spatial analysis, we used probabilistic independent component analysis (ICA) and a permutation statistical method to reveal the RSN differences between the groups. For the temporal analysis, we applied Granger causality to find differences in temporal neurodynamics. Results: Controls and HFA display very similar patterns and strengths of resting-state connectivity. We do not find any significant differences between HFA adolescents and controls in the spatial resting-state connectivity. However, in the temporal dynamics of this connectivity, we did find differences in the causal effect properties of RSNs originating in temporal and prefrontal cortices. Conclusion: The results show a difference between HFA and controls in the temporal neurodynamics from the ventral attention network to the salience-executive network: a pathway involving cognitive, executive, and emotion-related cortices. We hypothesized that this weaker dynamic pathway is due to a subtle trigger challenging the cognitive state prior to the resting state.


Assuntos
Transtorno do Espectro Autista , Cognição/fisiologia , Emoções/fisiologia , Córtex Pré-Frontal , Lobo Temporal , Adolescente , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/psicologia , Mapeamento Encefálico/métodos , Conectoma/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia , Análise Espaço-Temporal , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...